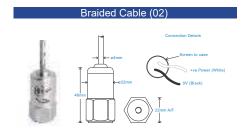
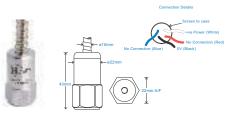


HS-100 Accelerometer

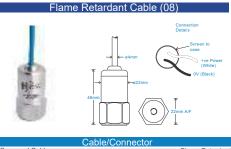
5000g EN61326-1:2013


AC Acceleration Output

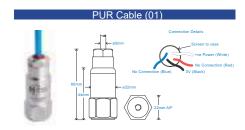
Cable and Connector Options


Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options HS-AA004 - non-booted	
Connector	HS-AA053 or HS-0054 - booted	
Environmental		
Operating Temperature	Range -55 to 140°C	

Odbic/Odifficator		
Screened Cable	HS-AC010 - straight HS-AC011 - right angle	
Environmental		
Operating Temperature Range Sealing	-55 to 140°C IP67	
Maximum Shock	5000g	


Cable/Connector		
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-55 to 140°C IP65	
Maximum Shock EMC	5000g EN61326-1:2013	

FEP Cable with Protective Conduit (30C)



Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Rai	nge -55 to 140°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC.	EN61326-1-2013	

Silicon Cable (07)

Cable/Connector		
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-40 to 100°C IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Cable/Connector		
Screened Cable	PUR	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-30 to 90°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Cable/Connector			
Screened Cable	Silicon		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-50 to 140°C		
Sealing Maximum Shock	IP68		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

Technical Performance

Mounted Base Resonance See 'How To Order' table (nominal) Sensitivity See: 'How To Order' table ±10% Nominal 80Hz at 22°C 2Hz (120cpm) to 10kHz (600kcpm) ± 5% Frequency Response 1.5Hz (90cpm) to 12kHz (720kcpm) ± 10% 0.8Hz (48cpm) to 15kHz (900kcpm) ± 3dB Isolation Base isolated See: 'How To Order' table Range Transverse Sensitivity Less than 5%

Mechanical

Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque Weight 106gms (nominal) body only Mounting Threads See: 'How To Order' table

HS-100 Accelerometer

AC Acceleration Output

Electrical

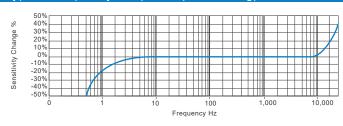
 Excitation Voltage:
 18-30Volts DC

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

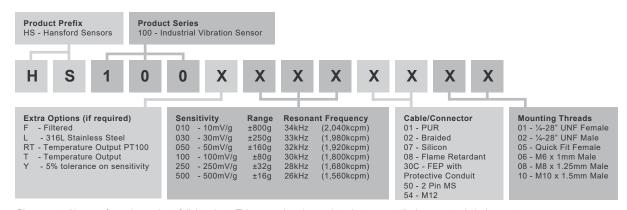
 Settling Time
 2 seconds


 Output Impedance
 200 Ohms max.

 Case Isolation
 >108 Ohms at 500 Volts

Industries

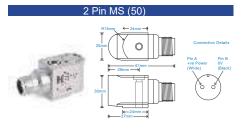
Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical, Wind


Typical Frequency Response (at 100mV/g)

Applications

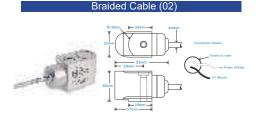
Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

How To Order

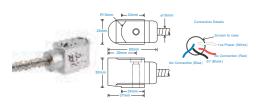


HS-100S Accelerometer

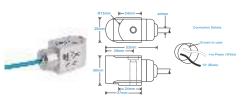
AC Acceleration Output-Side Entry


Cable and Connector Options

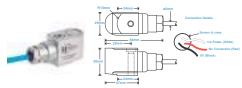
Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Connector	HS- AA004 - non-booted	
	HS-AA053 or HS-0054 - booted	
Environmental		
Operating Temperature Ran	ge -55 to 140°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	


R15mm b=24mm - Connection Datals Pin 4 One Connection Datals Pin 3 One Connection Pin 3 No Connection Pin 2 No Connection Pin 3 Pin 3 Pin 4 Pin 3 Pin 4 Pin 3 Pin 3

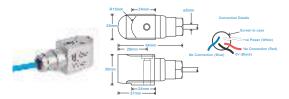
oreened Gable	HS-AC011 - right angle
Environmental	
Operating Temperature Range	-55 to 140°C
Sealing	IP67
Maximum Shock	5000g
EMC	EN61326-1:2013


Cable/Connector		
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-55 to 140°C IP65	
Maximum Shock EMC	5000g EN61326-1:2013	

FEP Cable with Protective Conduit (30C)


Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Ra	ange -55 to 140°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Flame Retardant Cable (08)


Cable/Connector			
Screened Cable	Flame Retardant		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-40 to 100°C		
Sealing	IP65		
Maximum Shock	5000a		
EMC	EN61326-1:2013		

Silicon Cable (07)

Cable/Connector			
Screened Cable	Silicon		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-50 to 140°C		
Sealing	IP68		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

PUR Cable (01)

Cable/Connector			
Screened Cable	PUR		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-30 to 90°C		
Sealing	IP68		
Maximum Shock	5000g		
EMC.	EN61326-1:2013		

Mechanical

Less than 5%

Case Material Stainless Steel
Sensing Element/Construction PZT/Compression
Mounting Torque 8Nm
Weight 185gms (nominal) body only
Mounting Threads See: 'How To Order' table

Technical Performance Mounted Base Resonance

Transverse Sensitivity

HS-100S Accelerometer

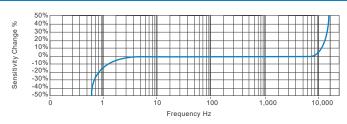
AC Acceleration Output-Side Entry

Excitation Voltage: Excitation Voltage: 18-30Volts DC Building service Building service

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

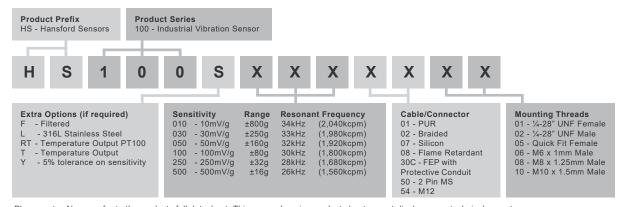

 Settling Time
 2 seconds

 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)

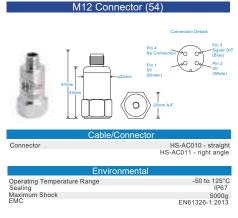


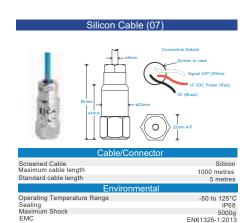
Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order




HS-104 Low Power Accelerometer

AC Acceleration Output

Cable and Connector Options

rechnical Performance	
Mounted Base Resonance	
Sensitivity	

see: 'How To Order' table ±10%
Nominal 80Hz at 22°C
0.3Hz (18cpm) to 10kHz (600kcpm) ± 10%
Base isolated
see: 'How To Order' table @ 5V power

see 'How To Order' table (nominal)

Less than 5%

Mechanical

Case MaterialStainless SteelSensing Element/ConstructionPZT/ShearMounting Torque8NmWeight125gms (nominal)Mounting Threadssee: 'How To Order' table

Electrical

Isolation

Range

Electrical Noise
Power Requirements
Current Consumption
Bias Voltage
Settling Time

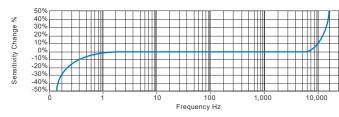
Frequency Response

Transverse Sensitivity

Amplitude Linearity

< 500μg 5V nominal (other voltages 1.8 to 24V on request) 100μA nominal at 5V supply (60μA at 1.8V) 50% of supply voltage

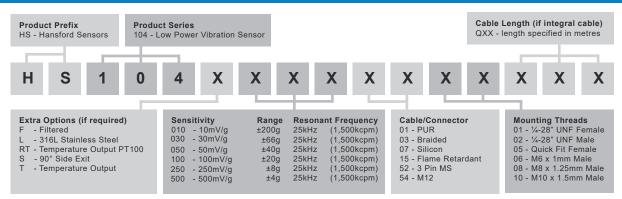
 Settling Time
 1 second


 Output Impedance
 100 Ohms max.

 Case Isolation
 >108 Ohms at 500 Volts

Industries

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

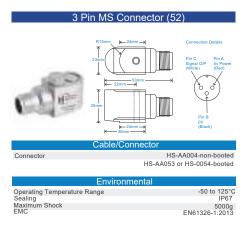

Typical Frequency Response (at 100mV/g)

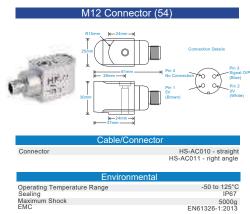
Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.





HS-104S Low Power Accelerometer

AC Acceleration Output

Cable and Connector Options

Technical Performance

Mounted Base Resonance see 'How To Order' table (nominal)
Sensitivity see: 'How To Order' table ±10%
Nominal 80Hz at 22°C
Frequency Response 0.3Hz (18cpm) to 10kHz (600kcpm) ± 10%
Isolation Base isolated
Range see: 'How To Order' table @ 5V power
Transverse Sensitivity Less than 5%
Amplitude Linearity ±1%

Mechanical

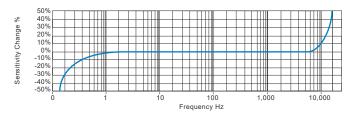
Case MaterialStainless SteelSensing Element/ConstructionPZT/ShearMounting Torque8NmWeight125gms (nominal)Mounting Threadssee: 'How To Order' table

Electrical

Case Isolation

Electrical Noise
Power Requirements
Current Consumption
Bias Voltage
Settling Time
Output Impedance

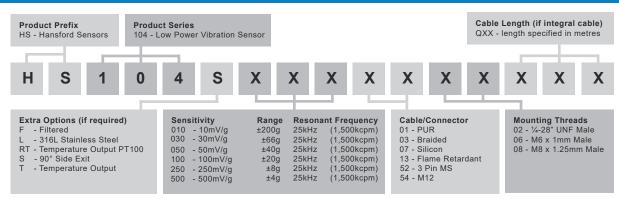
< 500μg 5V nominal (other voltages 1.8 to 24V on request) 100μA nominal at 5V supply (60μA at 1.8V) 50% of supply voltage


50% of supply voltage 1 second 100 Ohms max.

>108 Ohms at 500 Volts

Industries

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

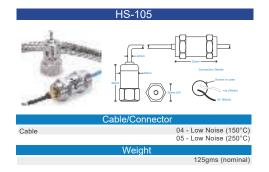

Typical Frequency Response (at 100mV/g)

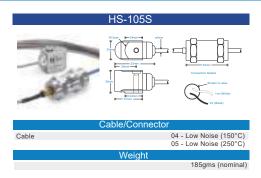
Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.





HS-105 High Temp. Accelerometer

AC Output via Low Noise Cable

Cable and Connector Options

Technical Performance

 Mounted Base Resonance
 see 'How To Order' table (nominal)

 Sensitivity
 see: 'How To Order' table ±10%

 Nominal 80Hz at 22°C

 Frequency Response
 2Hz (120cpm) to 10kHz (600kcpm) ± 5%

 1.5Hz (90cpm) to 12kHz (720kcpm) ± 10%

 0.8Hz (48cpm) to 15kHz (900kcpm) ± 3dB

 Isolation
 Base isolated

 Range
 see: 'How To Order' table

 Transverse Sensitivity
 Less than 5%

Mechanical

Case MaterialStainless SteelSensing Element/ConstructionPZT/CompressionMounting Torque8NmWeight125gms (nominal)Maximum Cable Length1000 metresCablesee: 'How To Order' table - (20 metres
max between sensor and charge amplifier)Mounting Threadssee: 'How To Order' table

Electrical

 Electrical Noise
 0.1mg max

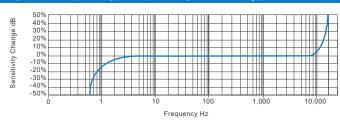
 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

 Settling Time
 2 seconds

 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

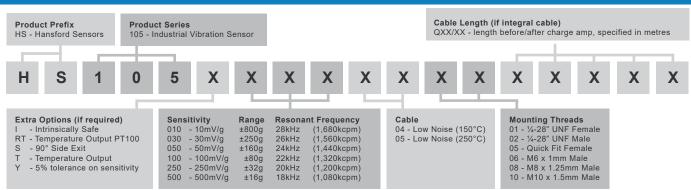

Environmental

Operating Temperature Range -55°C to see 'How To Order' table for max Sealing IP67

Maximum Shock 5000g

EMC EN61326-1:2013

Typical Frequency Response (at 100mV/g)


Applications

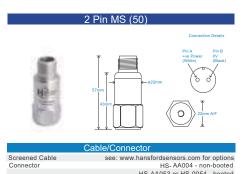
Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

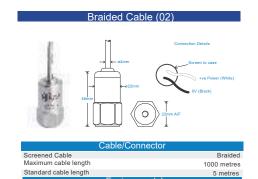
Industries

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

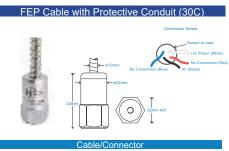


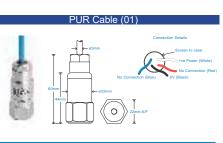
HS-150 Premium Accelerometer


AC Acceleration Output

Cable and Connector Options

H5-AA053 OF H5-0054 - DOOLED		
Environmental		
-55 to 150°C		
IP68		
5000g		


M12 Connector (54) HS-AC010 - straight HS-AC011 - right angle Screened Cable -55 to 150°C IP67 Operating Temperature Range Sealing Maximum Shock EMC 5000g EN61326-1:2013


-55 to 150°C

5000g EN61326-1:2013

Operating Temperature Range Sealing Maximum Shock EMC

Cable/Connector			
Screened Cable Maximum cable length Standard cable length	see: www.hansfordsensors.com for options 1000 metres 5 metres		
Environmental			
Operating Temperature Ra Sealing Maximum Shock	nge -55 to 150°C IP68 5000g		
EMC	EN61326-1:2013		

Cable/Connector			
Screened Cable	PUR		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-30 to 90°C		
Sealing	IP68		
Maximum Shock	5000g EN61326-1:2013		
EMC	EN01320-1:2013		

45mm	ree Power (Office) OV (Black)	
Cable/C	onnector	
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-40 to 100°C	
Sealing	IP65	
Maximum Shock FMC	5000g	
LWO	EN61326-1:2013	

Silicon Cable (07)		
60mm - s22mm	onection Details Screen to case *ve Power (White) No Connection (Red) OV (Black)	
Cable/Connector	r	
Screened Cable Maximum cable length Standard cable length	Silicon 1000 metres 5 metres	
Environmental		
Operating Temperature Range Sealing Maximum Shock EMC	-50 to 150°C IP68 5000g EN61326-1:2013	

Technical Performance	
Mounted Base Resonance	see 'How To Order' table (nominal)
Sensitivity	see: 'How To Order' table ±10%
	Nominal 80Hz at 22°C
Frequency Response	1.5Hz (90cpm) to 10kHz (600kcpm) ± 5%
	0.5Hz (30cpm) to 12kHz (720kcpm) ± 10%
	0.2Hz (12cpm) to 15kHz (900kcpm) ± 3dB
Isolation	Base isolated
Range	see: 'How To Order' table
Transverse Sensitivity	Less than 5%

Mechanical	
Case Material	Stainless Steel
Sensing Element/Construction	PZT/Shear
Mounting Torque	8Nm
Weight	106gms (nominal) body only
Mounting Threads	see: 'How To Order' table
· · · · · · · · · · · · · · · · · · ·	

HS-150 Premium Accelerometer

AC Acceleration Output

Electrical

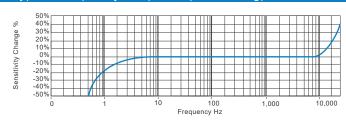
 Excitation Voltage:
 18-30Volts DC

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

 Settling Time
 2 seconds

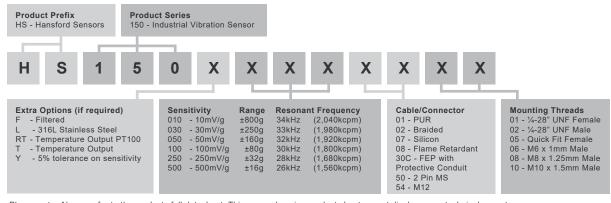

 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

Industries

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)



Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

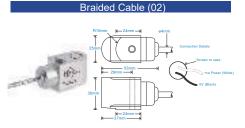
Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

HS-150S Premium Accelerometer

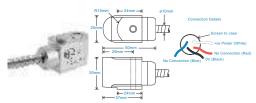
AC Acceleration Output-Side Entry

Cable and Connector Options

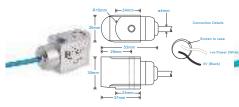


Cable/Connector			
Screened Cable see: www.hansfordsensors.com for options HS- AA004 - non-booted			
Connector	HS-AA053 or HS-0054 - booted		
Environmental			
Operating Temperature Ra Sealing	IP68		
Maximum Shock EMC	5000g EN61326-1:2013		

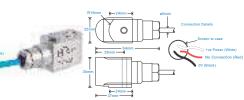
M12 Connector (54) R15mm —24mm —4 Connection Details Fin 4 (Black) — Pin 2 Fin 2 Fin 4 Fin 4 Fin 4 Fin 4 Fin 4 Fin 5 Fin 6 Fin 7 Fin 7

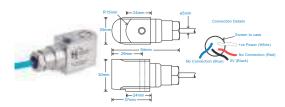

	HS-ACU11 - right angle		
Environmental			
Operating Temperature Range Sealing	-55 to 150°C IP67		
Maximum Shock	5000g EN61326-1:2013		

HS-AC010 - straight


Cable/Connector		
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-55 to 150°C IP65	
Maximum Shock EMC	5000g EN61326-1:2013	

FEP Cable with Protective Conduit (30C)


Cable/Connector		
Screened Cable	FEP - length to be specified with order	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-30 to 150°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	


Cable/Connector		
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-55 to 100°C IP65	
Maximum Shock EMC	5000g EN61326-1:2013	

Silicon Cable (07)

Cable/Conne	ctor	
Screened Cable	Silicon	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-50 to 150°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

PUR Cable (01)

Cable/Connec	tor	
Screened Cable	PUR	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-30 to 90°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Technical Performance

 $\begin{array}{c} \mbox{Mounted Base Resonance} & \mbox{See 'How To Order' table (nominal)} \\ \mbox{Sensitivity} & \mbox{See: 'How To Order' table $\pm 10\%$} \\ \mbox{Nominal 80Hz at } 22^{\circ}\mbox{C} \\ \mbox{Frequency Response} & 1.5Hz (90cpm) to 10kHz (600kcpm) <math>\pm 5\%$ \\ \mbox{0.5Hz (30cpm) to } 12kHz (720kcpm) \pm 10\%$ \\ \mbox{0.2Hz (12cpm) to } 15kHz (900kcpm) \pm 3dB$ \\ \mbox{Isolation} & \mbox{Base isolated} \\ \mbox{Range} & \mbox{See: 'How To Order' table} \\ \mbox{Transverse Sensitivity} & \mbox{Less than } 5\%$ \\ \end{array}$

Mechanical

Case Material Stainless Steel
Sensing Element/Construction PZT/Shear
Mounting Torque 8Nm
Weight 205gms (nominal) body only
Mounting Threads See: 'How To Order' table

HS-150S Premium Accelerometer

AC Acceleration Output-Side Entry

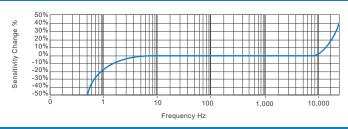
Electrical Industries

 Excitation Voltage:
 18-30Volts DC

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

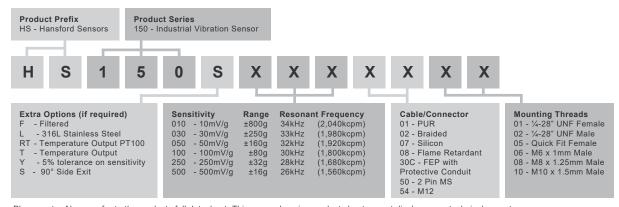

 Settling Time
 2 seconds

 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)

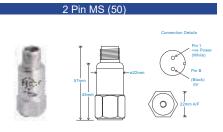


Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

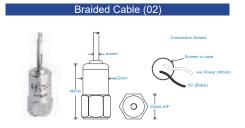
How To Order



HS-160 Accelerometer

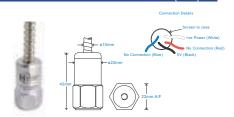
AC Velocity Output

Cable and Connector Options

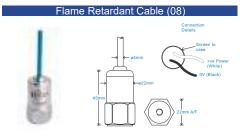


Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Connector	HS- AA004 - non-booted	
HS-AA053 or HS-0054 - booted		
Environmental		

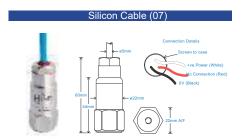
LIMIOIIIICIIII	
Operating Temperature Range	-55 to 140°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013


Cable/Connector		
Screened Cable		HS-AC010 - straight
		HS-AC011 - right angle
	Environmental	

Environmental	
Operating Temperature Range	-55 to 140°C
Sealing	IP67
Maximum Shock	5000g
EMC	EN61326-1:2013


Cable/Connect	or	
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-55 to 140°C IP65	
Maximum Shock	5000a	

FEP Cable with Protective Conduit (30C)



Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Ra	ange -55 to 140°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

PUR Cable (01)

Cable/Conne	ector	
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-40 to 100°C	
Sealing	IP65	
Maximum Shock	5000a	
EMC	FN61326-1:2013	

Cable/Connector		
Screened Cable	Silicon	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-50 to 140°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Technical Performance

Mounted Base Resonance see 'How To Order' table (nominal) Sensitivity see: 'How To Order' table ±10% Nominal 80Hz at 22°C 3Hz (180cpm) to 4.5kHz (270kcpm) ± 10% Frequency Response 2Hz (120cpm) to 6kHz (360kcpm) ± 3dB Isolation Base isolated Range see: 'How To Order' table Transverse Sensitivity Less than 5%

Mechanical

Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque 106gms (nominal) body only Weight Mounting Threads see: 'How To Order' table Submersible Depth 100 metres max (10 bar)

HS-160 Accelerometer

AC Velocity Output

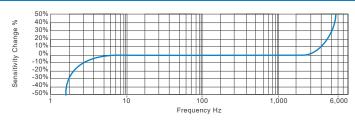
Electrical Industries

 Excitation Voltage:
 18-30 Volts DC

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

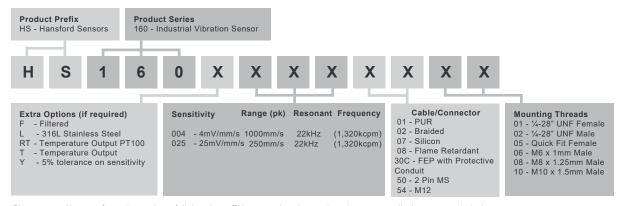

 Settling Time
 2 seconds

 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)



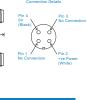
Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

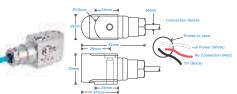
HS-160S Accelerometer


AC Velocity Output-Side Entry

Cable and Connector Options

Cable/Connector			
Screened Cable	see: www.hansfordsensors.com for options		
	HS- AA004 - non-booted		
Connector	HS-AA053 or HS-0054 - booted		
Environmental			
Operating Temperature	Range -55 to 140°C		
Sealing	IP68		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

M12 Connector (54)

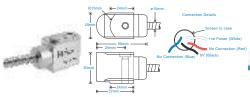

HS-AC010 - straight HS-AC011 - right angle

5000g EN61326-1:2013

Cable/Connec	ctor
Screened Cable	Brai
Maximum cable length	1000 me
Standard cable length	5 me
Environmen	tal
Operating Temperature Range Sealing	-55 to 14
Maximum Shock	50
EMC	EN61326-1:2

Braided Cable (02)

Silicon Cable (07)



Cable/Connec	tor
Screened Cable Maximum cable length	Silicon 1000 metres
Standard cable length	5 metres
Environment	al
Operating Temperature Range	FO 4- 44000
	-50 to 140°C
	-50 to 140 C
Sealing Maximum Shock	

FEP Cable with Protective Conduit (30C)

Screened Cable

Operating Temperature Range Sealing ng num Shock

Cable/Connector		
Screened Cable	FEP - length to be specified with order	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Rang	ge -55 to 140°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Flame Retardant Cable (08)

Cable/Connec	ctor	
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-40 to 100°C	
Sealing	IP65	
Maximum Shock	5000a	
EMC	EN61326-1:2013	

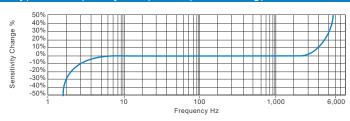
Technical Performance

Mounted Base Resonance See 'How To Order' table (nominal) Sensitivity See: 'How To Order' table ±10% Nominal 80Hz at 22°C 3Hz (180cpm) to 4.5kHz (270kcpm) \pm 10% Frequency Response 2Hz (120cpm) to 6kHz (360kcpm) ± 3dB Isolation Base isolated Range See: 'How To Order' table Transverse Sensitivity Less than 5%

Mechanical

Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque Weight 185gms (nominal) body only Mounting Threads See: 'How To Order' table

HS-160S Accelerometer

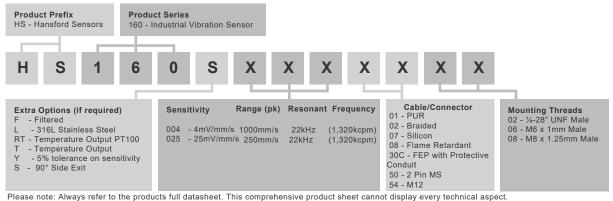

AC Velocity Output-Side Entry

Electrical Industries

Excitation Voltage: 18-30Volts DC **Electrical Noise** 0.1mg max Current Range 0.5mA to 8mA Bias Voltage 10 - 12 Volts DC Settling Time 2 seconds 200 Ohms max. Output Impedance Case Isolation >108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)



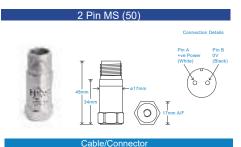
Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

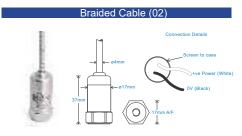
This is not the full product list, other options are available.



HS-170 Premium Accelerometer

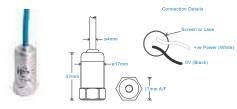
AC Acceleration Output

Cable and Connector Options



Screened Cable	see: www.hansfordsensors.com for options	
Connector	HS- AA004 - non-booted	
	HS-AA053 or HS-0054 - booted	
Environmental		

Operating Temperature Range	-55 to 150°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013


Connection Details Pin 4 0V (Black) Pin 2 No Connection Pin 3 No Connection Pin 2 Pin 3 Pin 2 Pin 3 Pin 2 Pin 3 Pin 2 Pin 3 P

Environmental	
Operating Temperature Range Sealing	-55 to 150°C IP67
Maximum Shock	5000g
EMC	EN61326-1:2013

Cable/Connec	tor	
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-55 to 150°C IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Flame Retardant Cable (08)

Cable/Connec	ctor	
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-40 to 100°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Technical Performance

 $\begin{array}{c} \mbox{Mounted Base Resonance} & \mbox{see 'How To Order' table (nominal)} \\ \mbox{Sensitivity} & \mbox{see: 'How To Order' table $\pm 10\%$} \\ \mbox{Nominal 80Hz at 22°C} \\ \mbox{Frequency Response} & \mbox{2Hz (120cpm) to 14kHz (840kcpm) $\pm 5\%$} \\ \mbox{1.5Hz (90cpm) to 16kHz (960kcpm) $\pm 10\%$} \\ \mbox{0.8Hz (48cpm) to 19kHz (1,140kcpm) $\pm 3d$} \\ \mbox{Isolation} & \mbox{Base isolated} \\ \mbox{Range} & \mbox{see: 'How To Order' table} \\ \mbox{Transverse Sensitivity} & \mbox{Less than } 5\% \\ \end{array}$

Mechanical

Case MaterialStainless SteelSensing Element/ConstructionPZT/ShearMounting Torque8NmWeight52gms (nominal) body onlyMounting Threadssee: 'How To Order' table

HS-170 Premium Accelerometer

AC Acceleration Output

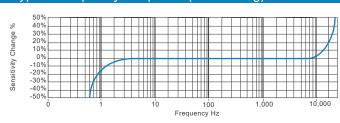
Electrical

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

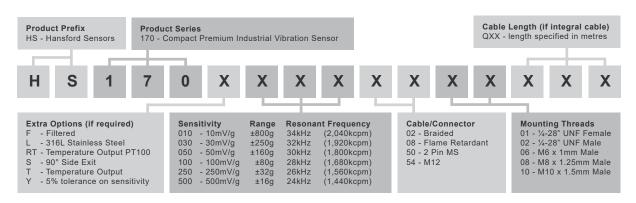
 Settling Time
 1 second


 Output Impedance
 200 Ohms max.

 Case Isolation
 >108 Ohms at 500 Volts

Industries

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical


Typical Frequency Response (at 100mV/g)

Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

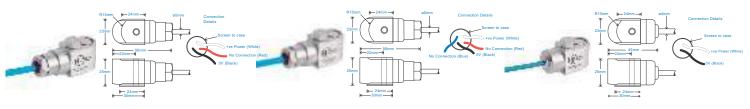
How To Order



HS-170S Premium Accelerometer

AC Acceleration Output-Side Entry

Cable and Connector Options



Cable/Connector	
Connector	Use booted connector only
Environmenta	al
Operating Temperature Range	-55 to 150°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013

Cable/Connector			
Connector Use booted connector only			
Environmental			
Operating Temperature Range	-55 to 150°C		
Sealing	IP67		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

Cable/Connector			
Screened Cable	Braided		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-55 to 150°C		
Sealing	IP65		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

Flame Retardant Cable (08)

Cable/Collifector			
Screened Cable	Silicon		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-55 to 150°C		
Sealing	IP68		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

Cable/Connector			
Screened Cable	PUR - length to be specified with order		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-30 to 90°C		
Sealing	IP68		
Maximum Shock	5000g		
FMC	EN61326-1:2013		

Cable/Conne	ector	
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-40 to 100°C	
Sealing	IP65	
Maximum Shock	5000a	
EMC	EN61326-1:2013	

Technical Performance

Mounted Base Resonance	See 'How To Order' table (nominal)
Sensitivity	See: 'How To Order' table ±10%
	Nominal 80Hz at 22°C
Frequency Response	2Hz (120cpm) to 14kHz (840kcpm) ± 10%
	1.5Hz (90cpm) to 16kHz (960kcpm) ± 10%
	0.8Hz (48cpm) to 19kHz (1,140kcpm) ± 3dB
Isolation	Base isolated
Range	See: 'How To Order' table
Transverse Sensitivity	Less than 5%

Mechanical

Case Material	Stainless Steel
Sensing Element/Construction	PZT/Shear
Mounting Torque	8Nm
Weight	135gms (nominal) body only
Mounting Threads	See: 'How To Order' table

HS-170S Premium Accelerometer

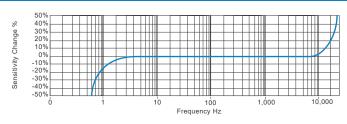
AC Acceleration Output-Side Entry

Electrical Industries

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

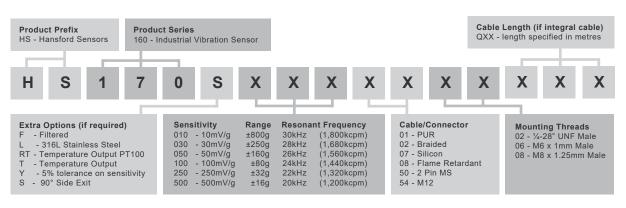

 Settling Time
 2 seconds

 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)

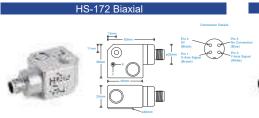


Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

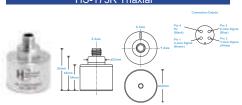
Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

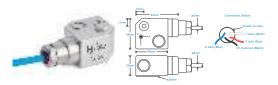


HS Premium Multi-Axial Accelerometers

AC Output


Cable and Connector Options

	e30mm		
Cable/Connector	r		
Screened Cable	HS- AC010 - Straight		
Environmental			
Operating Temperature Range	-55 to 130°C		
Sealing	IP67		
Maximum Shock	5000g		


Connection Dutals Time Claim Claim Part Cla

Cable/Collifiector			
Screened Cable	HS- AC010 - Straight		
Environmental			
Operating Temperature Range	-55 to 130°C		
Sealing	IP67		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

Environmental		
Operating Temperature Range Sealing	-55	to 130°C IP67
Maximum Shock EMC	EN6132	5000g 6-1:2013

HS-173 Triaxial PUR

Screened Cable	113-ACOTO - Straight		
Environmental			
Operating Temperature Range	-55 to 130°C		
Sealing	IP67		
Maximum Shock	5000a		
EMC	EN61326-1:2013		

Technical Performar	nce	Mechanical	
Mounted Base Resonance	see 'How To Order' table (nominal)	Case Material	Stainless Steel unless specified Aluminium
	+3kHz for aluminium version	Sensing Element/Construction	PZT/Shear
Sensitivity	see: 'How To Order' table ±10%	Mounting Torque	8Nm
	Nominal 80Hz at 22°C per axies	Mounting Bolt Provided	see: 'How To Order' table x 30mm long
Frequency Response	2Hz (120cpm) to 10kHz (600kcpm) ± 5%	Mounting Threads	see: 'How To Order' table
	1.5Hz (90cpm) to 12kHz (720kcpm) ± 10%	_	
	0.8Hz (48cpm) to 15kHz (900kcpm) ± 3dB		
Isolation	Base isolated		
Range	see: 'How To Order' table		
Transverse Sensitivity	Less than 5%		

HS Premium Multi-Axial Accelerometers

AC Output

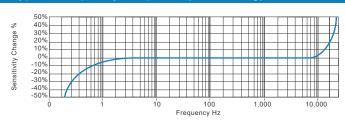
Electrical

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

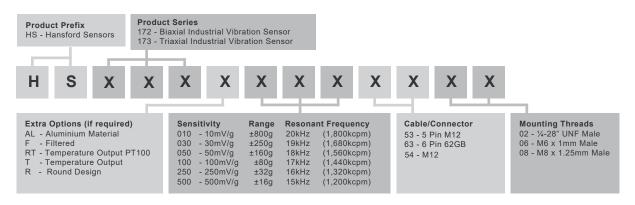
 Settling Time
 1 second


 Output Impedance
 200 Ohms max.

 Case Isolation
 >108 Ohms at 500 Volts

Industries

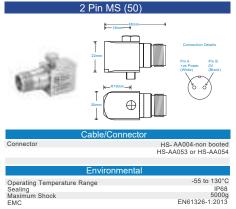
Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical, Wind

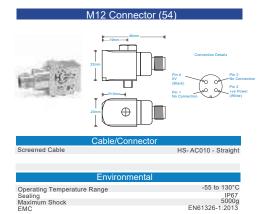

Typical Frequency Response (at 100mV/g)

Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

How To Order





HS-180 Premium Accelerometers

AC Acceleration Output

Cable and Connector Options

Technical Performance Mounted Base Resonance

see 'How To Order' table (nominal)

Sensitivity see: 'How To Order' table $\pm 10\%$ Nominal 80Hz at 22°C Frequency Response 2Hz (120cpm) to 14kHz (840kcpm) $\pm 5\%$

1.5Hz (90cpm) to 16kHz (960kcpm) ± 10% 0.8Hz (48cpm) to 19kHz (1,140kcpm) ± 3dB Base isolated

Isolation Base isolated Range see: 'How To Order' table

Mechanical

Case Material Stainless Steel
Sensing Element/Construction PZT/Shear
Mounting Torque 8Nm
Mounting Bolt Provided see: 'How To Order' table x 27mm long
Weight 87gms (nominal) body only
Mounting Threads see: 'How To Order' table

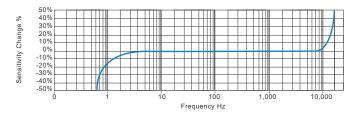
Electrical

 Electrical Noise
 0.1mg max

 Current Range
 0.5mA to 8mA

 Bias Voltage
 10 - 12 Volts DC

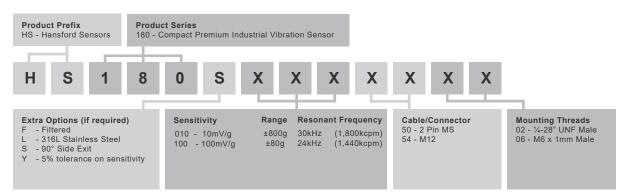
 Settling Time
 1 second


 Output Impedance
 200 Ohms max

 Case Isolation
 >108 Ohms at 500 Volts

Industries

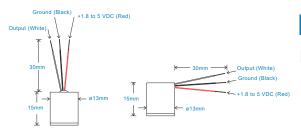
Automotive, Machine Tools, OEM


Typical Frequency Response (at 100mV/g)

Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

How To Order



HS Accelerometer Capsules

AC Acceleration Output

HS-004 Low Power Capsule

Mechanical

Case Material Stainless Steel Sensing Element/Construction PZT/Shear Weight 18gms (nominal)

Technical Performance

Mounted Base Resonance Sensitivity

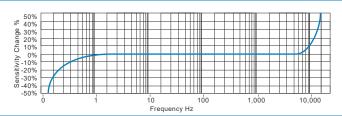
Frequency Response Isolation Range Transverse Sensitivity **Broadband Resolution** Amplitude Linearity

see 'How To Order' table (nominal) see: 'How To Order' table ±10% Nominal 80Hz at 22°C 0.3Hz (18cpm) to 15kHz (900kcpm) ± 3dB Base isolated see: 'How To Order' table @ 5V power Less than 5% <500 µg

Electrical

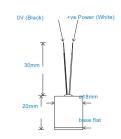
Electrical Noise Power Requirements **Current Consumption** Bias Voltage Settling Time Output Impedance Case Isolation

<<500µg


see: 'How To Order' table 100μA nominal at 5V supply (60μA at 1.8V) 50% of supply voltage 1 second

100 Ohms max. >108 Ohms at 500 Volts

Environmental


-40 to 120°C Operating Temperature Range Sealing IP55 5000g Maximum Shock EN61326-1:2013 **EMC** Electromagnetic Sensitivity 150 µg/gauss

Typical Frequency Response (at 100mV/g)

HS-050 Accelerometer Capsule

Mechanical

Stainless Steel Case Material PZT/Compression Sensing Element/Construction 34gms (nominal) Weight

Technical Performance

Mounted Base Resonance Sensitivity

Frequency Response

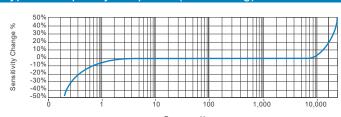
Isolation Range Transverse Sensitivity see 'How To Order' table (nominal) see: 'How To Order' table ±10% Nominal 80Hz at 22°C

sales@hansfordsensors.com

www.hansfordsensors.com

 $1.5 Hz (90 cpm) to 15 kHz (900 kcpm) \pm 5\%$ 0.5Hz (30cpm) to 17kHz (1,020kcpm) ± 10% 0.2Hz (12cpm) to 20kHz (1,200kcpm) ± 3dB

Base isolated see: 'How To Order' table Less than 5%

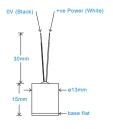

Electrical

Electrical Noise 0.1mg max Current Range 0.5mA to 8mA Bias Voltage 10-12 Volts DC Settling Time 1 second 200 Ohms max. Output Impedance Case Isolation >10 Ohms at 500 Volts

Environmental

Operating Temperature Range	-40 to 120°C
Sealing	IP55
Maximum Shock	5000g
EMC	EN61326-1:2013

Typical Frequency Response (at 100mV/g)


We reserve the right to alter the specification of this product without prior notice

HS Accelerometer Capsules

AC Acceleration Output

HS-070 Premium Accelerometer Capsule

0.2Hz (12cpm) to 19kHz (1,140kcpm) ± 3dB

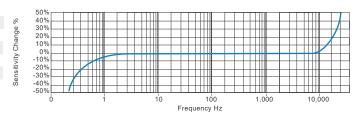
Mechanical

Stainless Steel Case Material Sensing Element/Construction PZT/Shear 13gms (nominal) Weight

Technical Performance

Mounted Base Resonance see 'How To Order' table (nominal) Sensitivity see: 'How To Order' table ±10% Nominal 80Hz at 22°C Frequency Response 1.5Hz (90cpm) to 14kHz (840kcpm) ± 5% 0.5Hz (30cpm) to 16kHz (960kcpm) ± 10%

Isolation Base isolated see: 'How To Order' table Transverse Sensitivity Less than 5%

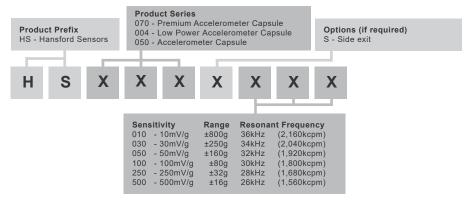

Electrical

0.1mg max Electrical Noise Current Range 0.5mA to 8mA Bias Voltage 10-12 Volts DC Settling Time 1 second Output Impedance 200 Ohms max. Case Isolation >108 Ohms at 500 Volts

Environmental

-55 to 130°C Operating Temperature Range Sealing IP55 5000g Maximum Shock EN61326-1:2013 EMC

Typical Frequency Response (at 100mV/g)



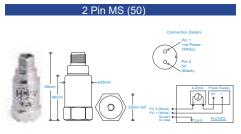
Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

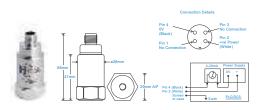
Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

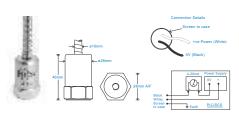

www.hansfordsensors.com

HS-420 Accelerometer

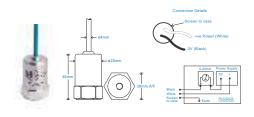

4-20mA Velocity Output

Cable and Connector Options

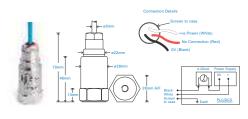
Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Connector	HS- AA004 - non-booted	
	HS-AA053 or HS-0054 - booted	
Environmental		


Operating Temperature Range	-25 to 120°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013

Cable/Connector		
Screened Cable	HS-AC010 - straight HS-AC011 - right angle	
Environmental		
Operating Temperature Range Sealing	-25 to 120°C IP67	
Maximum Shock EMC	5000g EN61326-1:2013	

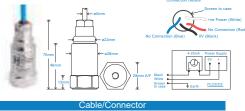

Cable/Connector			
Screened Cable	Braided		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-25 to 120°C		
Sealing Maximum Shock	IP65		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

FEP Cable with Protective Conduit (30C)



Cable/Connector		
Screened Cable Maximum cable length Standard cable length	see: www.hansfordsensors.com for options 1000 metres 5 metres	
Environmental		
Operating Temperature Ra Sealing	ange -25 to 120°C IP65	
Maximum Shock	5000g	

Flame Retardant Cable (08)



Cable/Conne	Clor	
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Screened Cable	Silicon	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 120°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

PUR Cable (01)

Cable/Connector		
Screened Cable	PUR	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP68	
Maximum Shock	5000g FN61326-1:2013	
EMC		

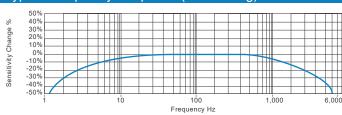
Technical Performance

Mounted Base Resonance 5kHz min Sensitivity see: 'How To Order' table ±10% Nominal 80Hz at 22°C Frequency Response $\,$ 10Hz (600cpm) to 1kHz (60kcpm) $\pm~5\%$ - ISO10816 Isolation Base isolated Range 50g peak Transverse Sensitivity Less than 5%

Mechanical

Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque 150gms (nominal) body only Weight Mounting Threads see: 'How To Order' table

HS-420 Accelerometer

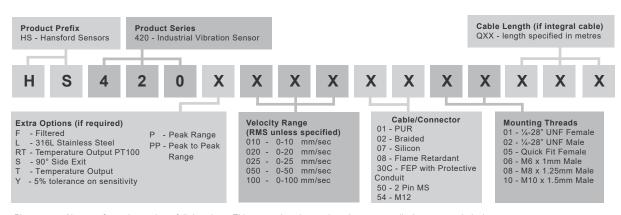

4-20mA Velocity Output

Electrical

Current Output 4-20mA DC proportional to Velocity Range
Supply Voltage 15-30 Volts DC (for 4-20mA)
Settling Time 2 seconds
Output Impedance Loop Resistance 600 Ohms max. at 24 Volts
Case Isolation >108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)

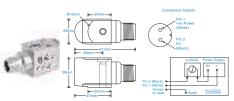

Applications

Industries

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

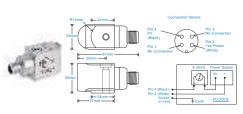
Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order



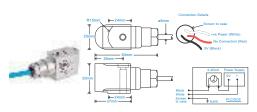
HS-420S Accelerometer

4-20mA Velocity Output-Side Entry


Cable and Connector Options

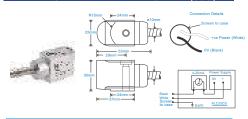
Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options HS- AA004 - non-booted	
Connector	HS-AA053 or HS-0054 - booted	
Environmental		
Operating Temperature Ra Sealing Maximum Shock FMC	inge -25 to 120°C IP68 5000g EN61326-1:2013	

M12 Connector (54)

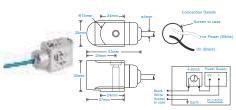


Cabis, Co	0000	
Screened Cable	HS-AC010 - straight HS-AC011 - right angle	
Environmental		
Operating Temperature Range Sealing	-25 to 120°C IP67	
Maximum Shock EMC	5000g EN61326-1:2013	

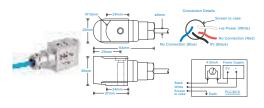
Fittem K-26mm adm Connection Details Green to case Fit Down Fi


Cable/Connector		
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-25 to 120°C IP65	
Maximum Shock EMC	5000g EN61326-1:2013	

Silicon Cable (07)


Cable/Connector		
Screened Cable	Silicon	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 120°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

FEP Cable with Protective Conduit (30C)


Screened Cable	FEP - length to be specified with order	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Ran	nge -25 to 120°C	
Sealing Maximum Shock	IP65	
	5000g	
EMC	EN61326-1:2013	

Flama Potardant Cable (09)

Cable/Connector		
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

PUR Cable (01)

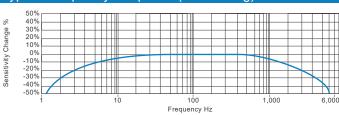
Cable/Connector		
Screened Cable	PUR	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP68	
Maximum Shock	5000g FN61326-1:2013	

Technical Performance

Mounted Base Reso	nance 5kHz min
Velocity Ranges	see: 'How To Order' table ±10%
	Nominal 80Hz at 22°C
Frequency Respons	e 10Hz (600cpm) to 1kHz (60kcpm) ± 5% - ISO10816
Isolation	Base isolated
Range	50g peak
Transverse Sensitiv	ty Less than 5%

Mechanical

Case Material	Stainless Steel
Sensing Element/Construction	PZT/Shear
Mounting Torque	8Nm
Weight	185gms (nominal) body only
Mounting Threads	See: 'How To Order' table


HS-420S Accelerometer

4-20mA Velocity Output-Side Entry

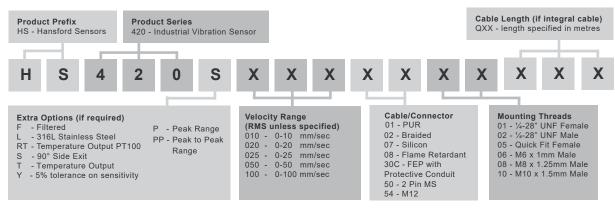
Electrical

Current Output 4-20mA DC proportional to Velocity Range Supply Voltage 15-30 Volts DC (for 4-20mA) Settling Time Output Impedance Loop Resistance 600 Ohms max. at 24 Volts Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive,

Typical Frequency Response (at 100mV/g) 40%

Applications

Industries


Water, Pharmaceutical

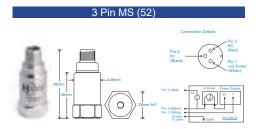
Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

Case Isolation

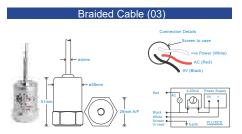
>108 Ohms at 500 Volts



HS-421 Accelerometer

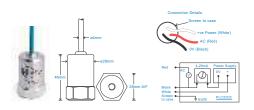
4-20mA Velocity and AC Acceleration Output

Cable and Connector Options

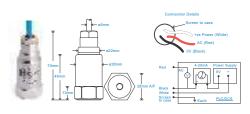

Cable/Connector		
Screened Cable	see: www.hansfordsensors.com for options	
Connector	HS- AA005 - non-booted	
	HS-AA068 or HS-0069 - booted	
Environmental		
051,0000		

Operating Temperature Range	-25 to 90°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013

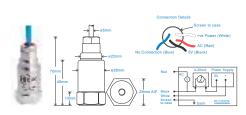
Connection Details Pin 4 O' (Black) Pin 1 (Black) Pin 1 (Brown) Pin 3 No Connection (Brown) Pin 3 No Connection (Brown) Pin 1 Pin 1 Pin 2 Pin 3 Pin 4 Pin 3 Pin 3


Cable/Connector		
Screened Cable	HS-AC010 - straight	
	HS-AC011 - right angle	
Environmental		
Operating Temperature Pange	-25 to 90°C	

Environmental	
Operating Temperature Range	-25 to 90°C
Sealing	IP67
Maximum Shock	5000g
EMC	EN61326-1:2013


Cable/Connector		
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Flame Retardant Cable (15)


Cable/Connector		
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Silicon Cable (07)

Cable/Connector		
Screened Cable	Silicon	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

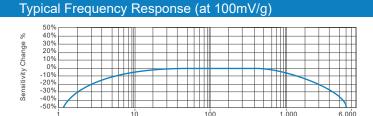
PUR Cable (01)

Cable/Connector			
Screened Cable	PUR		
Maximum cable length	1000 metres		
Standard cable length	5 metres		
Environmental			
Operating Temperature Range	-25 to 90°C		
Sealing	IP68		
Maximum Shock	5000g		
EMC	EN61326-1:2013		

Technical Performance

Mounted Base Resonance 5kHz min
Sensitivity see: 'How To Order' table ±10%
Nominal 80Hz at 22°C
Frequency Response 10Hz (600cpm) to 1kHz (60kcpm) ± 5% - ISO10816
Isolation Base isolated
Range see: How to order table
Transverse Sensitivity Less than 5%

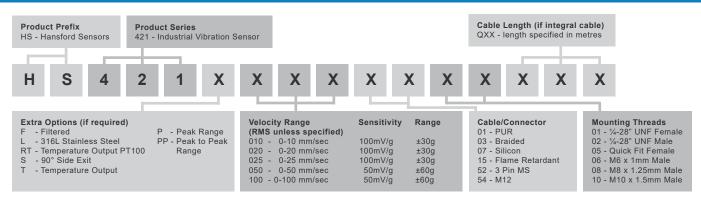
Mechanical


Case MaterialStainless SteelSensing Element/ConstructionPZT/CompressionMounting Torque8NmWeight150gms (nominal) body onlyMounting Threadssee: 'How To Order' tableSubmersible Depth100 metres max (10 bar)

HS-421 Accelerometer

4-20mA Velocity and AC Acceleration Output

Electrical		Industries
Outputs	4-20mA DC current proportional to Range	Building services, Pulp and Paper,
	and AC acceleration	Mining, Metals, Utilities, Automotive,
Bias Voltage	3 Volts DC (nominal)	Water, Pharmaceutical
Supply Voltage	15-30 Volts DC (for 4-20mA)	
Settling Time	2 seconds	
Output Impedance	Loop Resistance 600 Ohms max. at 24 Volts	
Case Isolation	>108 Ohms at 500 Volts	

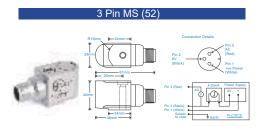

Frequency Hz

Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

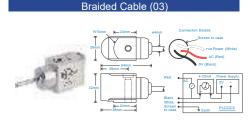
Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

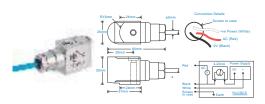


HS-421S Accelerometer

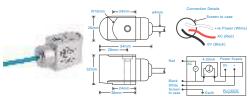
4-20mA Velocity and AC Acceleration Output-Side Entry


Cable and Connector Options

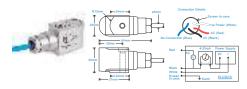
	Cable/Connector	
Screened Cable	see: www.hansfordsensors.com for options HS- AA010 - straight	
Connector	HS-AA011- right angle	
Environmental		
Operating Temperature	Range -25 to 90°C	
Sealing	IP67	
Maximum Shock	5000g	


M12 Connector (54)

Cable/Connector			
Screened Cable	HS-AC010 - straight HS-AC011 - right angle		
Environmental			
Operating Temperature Range Sealing Maximum Shock	-25 to 90°C IP67		
EMC	5000g EN61326-1:2013		


Cable/Connector		
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Silicon Cable (07)


Cable/Connector		
Screened Cable	Silicon	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing Maximum Shock	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Flame Retardant Cable (15)

Cable/Connector		
Screened Cable	Flame Retardant	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range Sealing	-25 to 90°C IP65	
Maximum Shock EMC	5000g EN61326-1:2013	

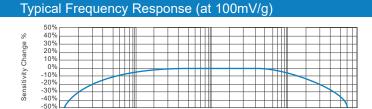
PUR Cable (01)

Cable/Connector		
Screened Cable	PUR	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP68	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Technical Performance

Mounted Base Resonance 5kHz min Velocity Ranges see: 'How To Order' table ±10% Nominal 80Hz at 22°C Frequency Response 10Hz (600cpm) to 1kHz (60kcpm) ± 5% - ISO10816 Isolation Base isolated Range See: 'How To Order' table Transverse Sensitivity Less than 5%

Mechanical


Case Material Stainless Steel Sensing Element/Construction PZT/Shear Mounting Torque 8Nm Weight 185gms (nominal) body only Mounting Threads See: 'How To Order' table

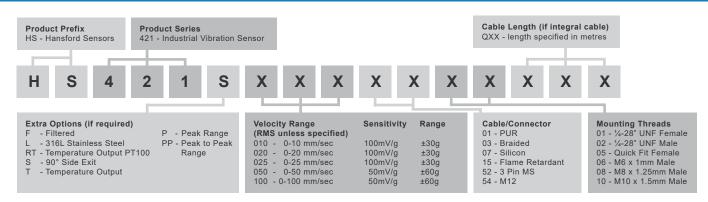
HS-421S Accelerometer

4-20mA Velocity and AC Acceleration Output-Side Entry

Electrical		Industries	
	100 100 1 1 1 0		
Outputs	4-20mA DC current proportional to Range	Building services, Pulp and Paper,	
	and AC acceleration	Mining, Metals, Utilities, Automotive,	
Bias Voltage	3 Volts DC (nominal)	Water, Pharmaceutical	
Supply Voltage	15-30 Volts DC (for 4-20mA)		
Settling Time	1 second		
Output Impedance	Loop Resistance 600 Ohms max. at 24 Volts		
Case Isolation	>108 Ohms at 500 Volts		

100

Frequency Hz


10

Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

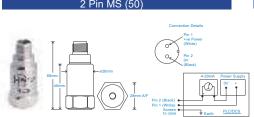
Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

6.000

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

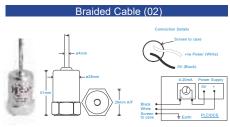
1.000



HS-422 Accelerometer

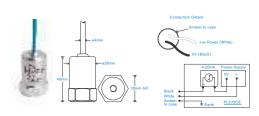
4-20mA Acceleration Output

Cable and Connector Options

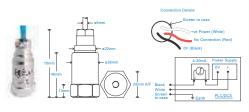


Cable/Connector		
Screened Cable Connector	see: www.hansfordsensors.com for options HS- AA004 - non-booted HS-AA053 or HS-0054- booted	
Environmental		
Operating Temperature Ra Sealing Maximum Shock	ange -25 to 90°C IP68 5000g	
EMC	EN61326-1:2013	

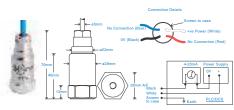
M12 Connector (54) Connection Details Pp 1 (Black) Pp 1 (Black) Pp 1 (Black) Pp 1 (Black) Pp 2 (Black) Pp 2 (Black) Pp 2 (Black) Pp 3 (Black) Pp 3 (Black) Pp 1 (Black) Pp 2 (Black) Pp 3 (Black) Pp 1 (Black) Pp 2 (Black) Pp 2 (Black) Pp 2 (Black) Pp 3 (Black) Pp 3 (Black) Pp 4 (Black) Pp 2 (Black) Pp 3 (Black) Pp 4 (Black) Pp 3 (Black) Pp 4 (Black) Pp 4 (Black) Pp 5 (Black) Pp 6 (Black) Pp 6 (Black) Pp 7 (Black) Pp 7 (Black) Pp 8 (Black) Pp 8 (Black) Pp 9 (Black) Pp 9


	HS-AC011 - right angle
Environmental	
Operating Temperature Range	-25 to 90°C
Sealing	IP67
Maximum Shock	5000g
EMC	EN61326-1:2013

HS-AC010 - straight


Cable/Connector	
Screened Cable	Braided
Maximum cable length	1000 metres
Standard cable length	5 metres
Environmental	
Operating Temperature Range	-25 to 90°C
Sealing	IP65
Maximum Shock	5000g
EMC	EN61326-1:2013

Flame Retardant Cable (08)


Cable/Conne	ctor
Screened Cable	Flame Retardant
Maximum cable length	1000 metres
Standard cable length	5 metres
Environment	al
Operating Temperature Range	-25 to 90°C
Sealing	IP65
Maximum Shock	5000g
EMC	EN61326-1:2013

Silicon Cable (07)

Cable/Connector	
Screened Cable	Silicon
Maximum cable length	1000 metres
Standard cable length	5 metres
Environmental	
Operating Temperature Range	-25 to 90°C
Sealing Maximum Shock	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013

PUR Cable (01)

Cable/Connector	
Screened Cable	PUR
Maximum cable length	1000 metres
Standard cable length	5 metres
Environmental	
Operating Temperature Range	-25 to 90°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013

Technical Performance

 $\begin{array}{c} \mbox{Mounted Base Resonance} & 10\mbox{kHz min} \\ \mbox{Acceleration Ranges} & \mbox{see: 'How To Order' table $\pm 10\%$} \\ \mbox{Nominal 80Hz at 22°C} \\ \mbox{Frequency Response} & 10\mbox{Hz (600cpm) to 5kHz (300kcpm) $\pm 5\%$} \\ \mbox{- ISO10816} \\ \mbox{Isolation} & \mbox{Base isolated} \\ \mbox{Range} & \mbox{see: 'How To Order' table} \\ \mbox{Transverse Sensitivity} & \mbox{Less than } 5\% \\ \end{array}$

Mechanical

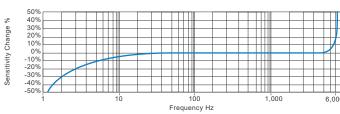
Case MaterialStainless SteelSensing Element/ConstructionPZT/CompressionMounting Torque8NmWeight150gms (nominal) body onlyMounting Threadssee: 'How To Order' tableSubmersible Depth100 metres max (10 bar)

HS-422 Accelerometer

4-20mA Acceleration Output

Electrical

Current Output Supply Voltage Settling Time Output Impedance

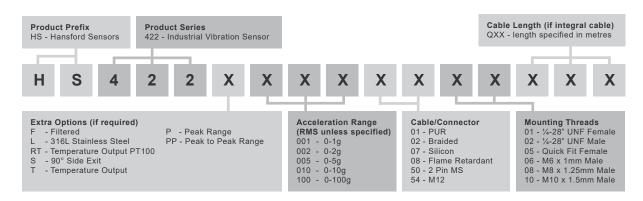

Case Isolation

4-20mA DC proportional to acceleration 15-30 Volts DC (for 4-20mA) 2 seconds Loop Resistance 600 Ohms max. at 24 Volts

>108 Ohms at 500 Volts

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Typical Frequency Response (at 100mV/g)


Applications

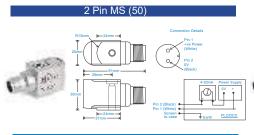
Industries

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

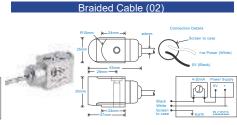


TS883

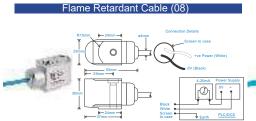
HS-422S Accelerometer

4-20mA Acceleration Output-Side Entry

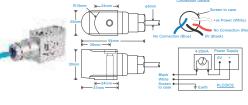
Cable and Connector Options



Cable/Connector	
Screened Cable	see: www.hansfordsensors.com for options
Connector	HS- AA004- non-booted HS-AA053 or HS-0054 - booted
Environmental	
Operating Temperature Ran	nge -25 to 90°C
Sealing	IP68
Maximum Shock	5000g
EMC	EN61326-1:2013


M12 Connector (54) Connection Details Pin 3 Connection Details Pin 3 Connection Details Pin 3 No Connection Pin 2 (White) Pin 3 (White) Pin 4 (White) Pin 3 (White) Pin 3 (White) Pin 3 (White) Pin 4 (White) Pin 5 (White) Pin 5 (White) Pin 6 (White) Pin 7 (White) Pin 7 (White) Pin 7 (White) Pin 8 (White) Pin 9 (White) Pin 9 (White) Pin 9 (White) Pin 1 (White) Pin 1 (White) Pin 2 (White) Pin 2 (White) Pin 3 (White) Pin 3 (White) Pin 4 (White) Pin 5 (White) Pin 5 (White) Pin 6 (White) Pin 7 (White) Pin 7 (White) Pin 8 (White) Pin 9 (Wh

	HS-AC011 - right angle
Environmental	
Operating Temperature Range	-25 to 90°C
Sealing	IP67
Maximum Shock	5000g
EMC	EN61326-1:2013


HS-AC010 - straight

Cabic/Connec	toi
Screened Cable	Braided
Maximum cable length	1000 metres
Standard cable length	5 metres
Environmental	
Operating Temperature Range Sealing	-25 to 90°C IP65
Maximum Shock EMC	5000g EN61326-1:2013

Cable/Conne	ector
Screened Cable	Flame Retardant
Maximum cable length	1000 metres
Standard cable length	5 metres
Environmental	
Operating Temperature Range	-25 to 90°C
Sealing	IP65
Maximum Shock	5000g
EMC	EN61326-1:2013

PUR	
1000 metres	
5 metres	
Environmental	
-25 to 90°C	
IP68	
5000g	
EN61326-1:2013	

Technical Performance

 $\begin{array}{c} \mbox{Mounted Base Resonance} & 10\mbox{kHz min} \\ \mbox{Acceleration Ranges} & \mbox{see: 'How To Order' table $\pm 10\%$} \\ \mbox{Nominal 80Hz at 22°C} \\ \mbox{Frequency Response} & 10\mbox{Hz (600cpm) to 5kHz (300kcpm) $\pm 5\%$} \\ \mbox{- ISO1081} \\ \mbox{Isolation} & \mbox{Base isolated} \\ \mbox{Range} & \mbox{see: 'How To Order' table} \\ \mbox{Transverse Sensitivity} & \mbox{Less than } 5\% \\ \end{array}$

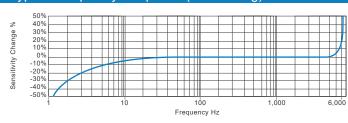
Mechanical

Case Material Stainless Steel
Sensing Element/Construction PZT/Shear
Mounting Torque 8Nm
Weight 185gms (nominal) body only
Mounting Threads See: 'How To Order' table

HS-422S Accelerometer

4-20mA Acceleration Output-Side Entry

Electrical Industries

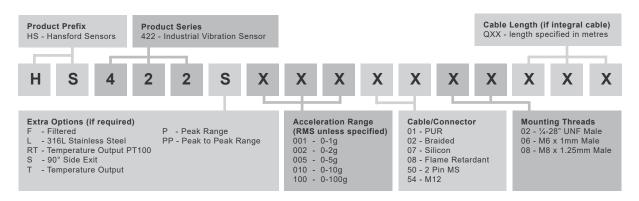

>108 Ohms at 500 Volts

Current Output 4-20mA DC proportional to acceleration Supply Voltage 15-30 Volts DC (for 4-20mA) Settling Time 1 second Output Impedance Loop Resistance 600 Ohms max. at 24 Volts

Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

Building services, Pulp and Paper,

Typical Frequency Response (at 100mV/g)


Applications

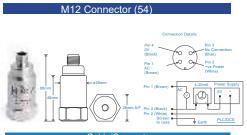
Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

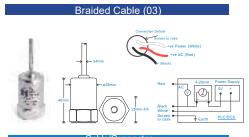
How To Order

Case Isolation

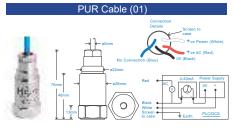
Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-423 Accelerometer


4-20mA Acceleration and AC Acceleration Output

Cable and Connector Options



Ca	ble/Connector
Screened Cable	HS-AC010 - straight
	HS-AC011 - right angle

Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP67	
Maximum Shock	5000g	
EMC	FN61326-1:2013	

Cable/Connec	ctor	
Screened Cable	Braided	
Maximum cable length	1000 metres	
Standard cable length	5 metres	
Environmental		
Operating Temperature Range	-25 to 90°C	
Sealing	IP65	
Maximum Shock	5000g	
EMC	EN61326-1:2013	

Cable/Connec	ctor
Screened Cable	PUR
Maximum cable length	1000 metres
Standard cable length	5 metres
Environment	tal
Operating Temperature Range	-25 to 90°C
Sealing	IP68
Maximum Shock	5000g
FMC	EN61326-1:2013

Silicon Cal	ole (07)
7cm sign	Connection Details Screen to case +ve Power (White) +ve AC (Red) OV (Black) OV (Black) From Supply Black White Form Supply Black Form Supply
Cable/Co	nnector
Screened Cable Maximum cable length Standard cable length	Silicon 1000 metres 5 metres
Environ	mental
Operating Temperature Range	-25 to 90°C

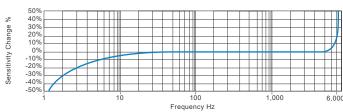
Sealing Maximum Shock EMC

Technical Performance	
Mounted Base Resonance	10kHz min
Acceleration Ranges	see: 'How To Order' table ±10%
	Nominal 80Hz at 22°C
Frequency Response	10Hz (600cpm) to 5kHz (300kcpm) ± 5%
	- ISO10816

Isolation Base isolated Range see: 'How To Order' table Transverse Sensitivity Less than 5%

Mechanical

Case MaterialStainless SteelSensing Element/ConstructionPZT/CompressionMounting Torque8NmWeight135gms (nominal) body onlyMounting Threadssee: 'How To Order' tableSubmersible Depth100 metres max (10 bar)

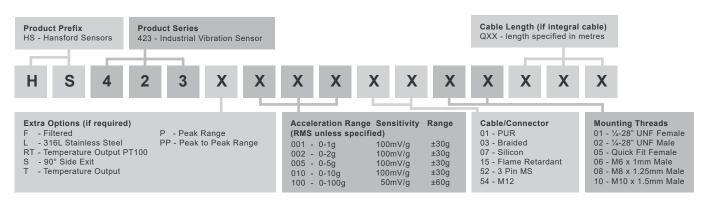


HS-423 Accelerometer

4-20mA Acceleration and AC Acceleration Output

Industries Electrical **Current Output** 4-20mA DC current proportional to Building services, Pulp and Paper, acceleration and AC acceleration Mining, Metals, Utilities, Automotive, 3 Volts DC (nominal) Water, Pharmaceutical Bias Voltage Supply Voltage 15-30 Volts DC (for 4-20mA) Settling Time 2 seconds Output Impedance Loop Resistance 600 Ohms max. at 24 Volts Case Isolation >108 Ohms at 500 Volts

Typical Frequency Response (at 100mV/g)

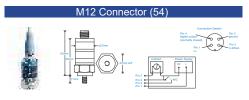


Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

Vibration sensor should be firmly fixed to a flat surface (spot face surface may be needed to be produced and cable anchored to sensor body.)

How To Order


Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

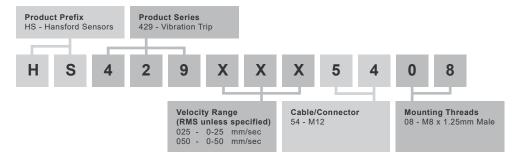
HS-429 Vibration Trip

Cable and Connector Options

Cable	/Connector
Screened Cable	HS-AC010 - straight
	HS-AC011 - right angle

Environmental		
Operating Temperature Range	-25 to 80°C	
Sealing	IP67	
Maximum Shock	100g	
EMC	EN61326-1:2013	
Reverse Policy	Protected	
MTBF	510 years	

Technical Performance


Mechanical

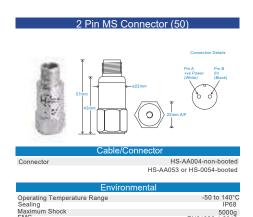
Case MaterialStainless Steel 316L/PlasticMounting Torque15NmWeight116gms (nominal)Mounting ThreadsM8 x 1.25mm maleSupporting ProductsAA102 - Protective plastic casing

Electrical

Current Output 4-20mA DC proportional to Velocity Range
Supply Voltage 18-32 Volts DC
Switching Output NC, PNP up to 500mA
Display OK LED Green
Trip LED Yellow
Current Consumption 18-30volts DC at 50mA

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-107 Line Drive Accelerometer

AC Acceleration Output

Cable and Connector Options

Technical Performance Mounted Base Resonance Sensitivity Frequency Response

see 'How To Order' table (nominal) see: 'How To Order' table ±10% Nominal 80Hz at 22°C

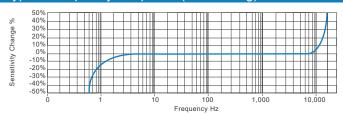
2Hz (120cpm) to 10kHz (600kcpm) ± 5% 1.5Hz (90cpm) to 12kHz (720kcpm) ± 10% 0.8Hz (48cpm) to 15kHz (900kcpm) ± 3dB

Isolation Base isolated see: 'How To Order' table Range Transverse Sensitivity Less than 5%

5000g EN61326-1:2013

Mechanical

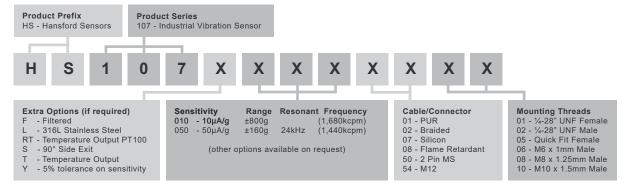
Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque 8Nm 106gms (nominal) Weight Mounting Threads see: 'How To Order' table


Electrical

Electrical Noise 0.1mg max Supply Voltage 7.5 - 24Volts DC Bias Current 3.5mA Settling Time 2 seconds **Output Impedance** 200 Ohms max. >108 Ohms at 500 Volts Case Isolation

Industries

Building services, Pulp and Paper, Mining, Metals, Utilities, Automotive, Water, Pharmaceutical

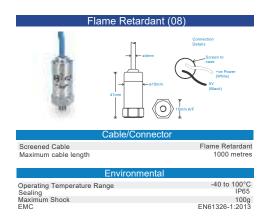

Typical Frequency Response (at 100mV/g)

Applications

Fans, Motors, Pumps, Compressors, Centrifuges, Conveyors, Air Handlers, Gearboxes, Rolls, Dryers, Presses, Cooling, VAC, Spindles, Machine Tooling, Process Equipment

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available



HS-130 Accelerometer

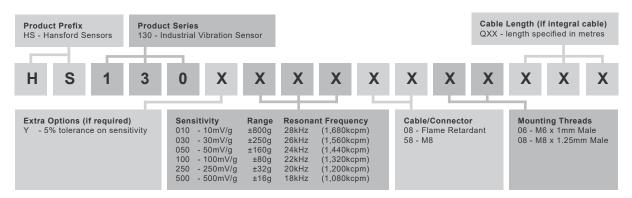
AC acceleration output via Flame Retardant Cable

Cable and Connector Options

Technical Performance	
Mounted Base Resonance	see 'How To Order' table (nominal)
Sensitivity	see: 'How To Order' table ±10%
	Nominal 80Hz at 22°C
Frequency Response	2Hz (120cpm) to 14kHz (840kcpm) ± 5%
	1.5Hz (90cpm) to 16kHz (960kcpm) ± 10%
	0.8Hz (48cpm) to 19kHz (1,140kcpm) ± 3dB
Isolation	Base isolated
Range	see: 'How To Order' table

Mechanical Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque 8Nm Weight 30gms (nominal) body only Standard Cable Length 5 metres

see: 'How To Order' table


Mounting Threads

Electrical

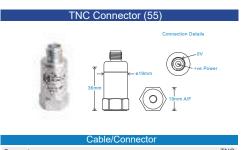
Transverse Sensitivity

Electrical Noise 0.1mg max **Current Range** 0.5mA to 8mA Bias Voltage 10 - 12 Volts DC Settling Time 2 seconds Output Impedance 200 Ohms max. Case Isolation >108 Ohms at 500 Volts

How To Order

Less than 5%

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-102 Accelerometer

AC acceleration output via TNC Connector

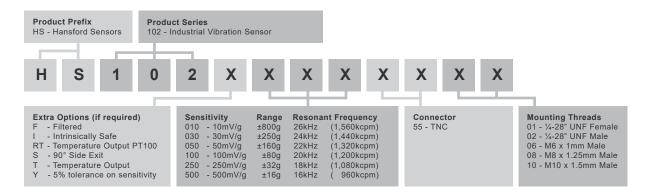
Cable and Connector Options

Environmenta	al
Operating Temperature Range Sealing	-55 to 90°C IP65
Maximum Shock	5000g
EMC	EN61326-1:2013

Technical Performance

Mounted Base Resonance see 'How To Order' table (nominal) Sensitivity see: 'How To Order' table ±10% Nominal 80Hz at 22°C 2Hz (120cpm) to 14kHz (840kcpm) ± 5% Frequency Response 1.5Hz (90cpm) to 16kHz (960kcpm) ± 10% 0.8Hz (48cpm) to 19kHz (1,140kcpm) ± 3dB Isolation Base non-isolated see: 'How To Order' table Range

Mechanical


Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque Weight 50gms (nominal) Mounting Threads see: 'How To Order' table

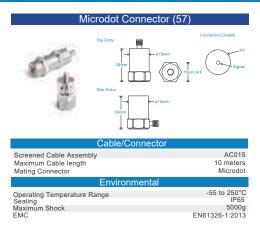
Electrical

Transverse Sensitivity

Electrical Noise 0.1mg max Current Range 0.5mA to 8mA Bias Voltage 10 - 12 Volts DC Settling Time 2 seconds Output Impedance 200 Ohms max. Case Isolation >108 Ohms at 500 Volts

How To Order

Less than 5%


Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

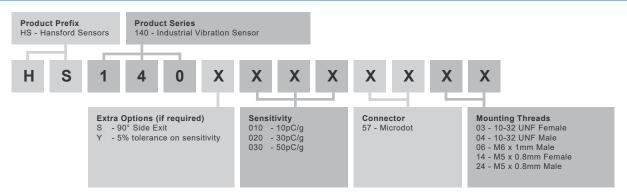
HS-140 Charge Output Accelerometer AC acceleration output via Microdot Connector

Cable and Connector Options

Technical Performance

Mounted Base Resonance 32kHz (nominal) Sensitivity see: 'How To Order' table ±10% Nominal 80Hz at 22°C Frequency Response 2Hz (120cpm) to 12kHz (720kcpm) ± 5% - dependant on charge amplifie Isolation Base non-isolated Range ±800g Transverse Sensitivity Less than 5% Amplitude Linearity ±1%

Mechanical


Case Material Stainless Steel Sensing Element/Construction PZT/Compression Mounting Torque 3Nm Weight 24gms (nominal) body only Mounting Threads see: 'How To Order' table Radiation Resistant Select as an option if required

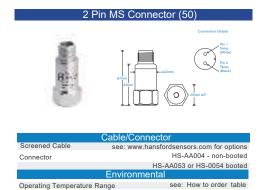
Electrical

Capacitance Charge Amplifier

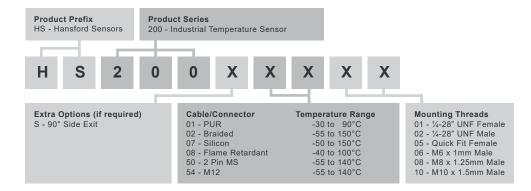
450 pF nom. External unit required: HS-CA002 - standard HS-CA001 - velocity

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-200 Temperature Sensor only PT100 temperature output via 2 Pin MS Connector

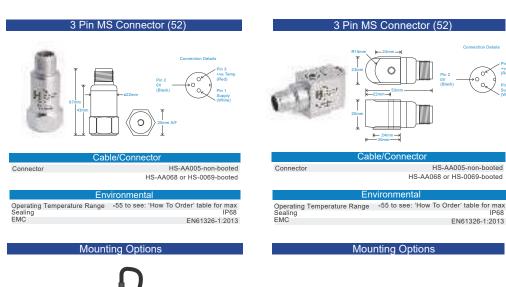

IP68 EN61326-1:2013

Cable and Connector Options

Technical Performance		Mechanical	
Temperature Output	PT100 (100 Ohms)	Case Material	Stainless Steel
Isolation	Base isolated	Mounting Torque	8Nm
		Weight	125gms (nominal)
		Mounting Threads	see: 'How To Order' table

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-210 Temperature Sensor

Only Temperature Output

Cable and Connector Options

Technical Performance

Temperature Output Isolation

10 mV/°C standard 100°C - Option 150°C

Base isolated

Case Material Mounting Torque

Mounting Threads

Environmental

Mechanical

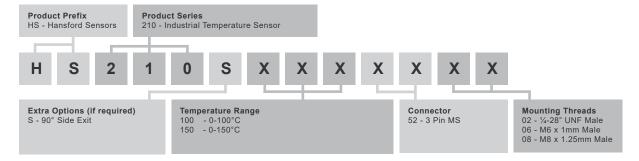
Mounting Bolt provided Weight Screened Cable Assembly Connector

Stainless Steel see: 'How To Order' table x 30mm long

125gms (nominal) see: www.hansfordsensors.com for options HS-AA005 - non-booted

> HS-AA068 or HS-0069 - booted see: 'How To Order' table

Electrical


4-30 VDC Operating Voltage

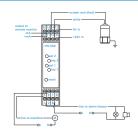
Operating Temperature Range Sealing EMC

-55 to see: 'How To Order' table for max

EN61326-1:2013

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available



HS-509

Key Features

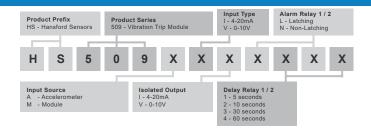
- Fully configurable
- Delay start-up
- Dual relays
- Various inputs
- · Relay inhibit

Technical Performance

4-20mA from HS-420 16 to 30 VDC (HS-570 Power Supply Module) Power Requirements Maximum Current 120 mA

Mechanical

Case Material Plastic DIN Rail TS35 (Top Hat) Mounting **Dimensions** 114.5 x 99 x 22.5 mm (HxDxW) Connections Screw Clamp 0.5 to 4.0 mm Conductor Size Weight 140 gms (nom)

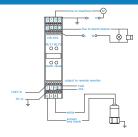

Electrical

Set Points Dual relays (front panel programmable) Relay Rating 3 Amps at 240 Volts AC Relay Status N/O or N/C Latching / Non Latching Relay Delays 5, 10, 30, 60 secs (selectable) Outputs 4-20 mA or 0-10 Volts DC Reset Internal push button, external voltage

Environmental

Operating Temperature Range 0 to 55°C Installation Category (IEC664) Ш Equipment Class (IEC536) Ш EN61326-1:2013 **EMC**

How To Order



HS-510

Key Features

- Fully configurable
- Delay start-up Dual relays
- Various inputs
- Relay inhibit

Technical Performance

Input	0-10VDC or 4-20mA from HS-420 or HS-530,
	HS-535 or HS-556
Power Requirements	16 to 30 VDC (HS-570 Power Supply Module)
Maximum Current	120 mA
Display Range Options	0-100 mm/sec (programmable)
	0-100g (programmable)
	0-100 °C
Display	3½ digit (Green LED)

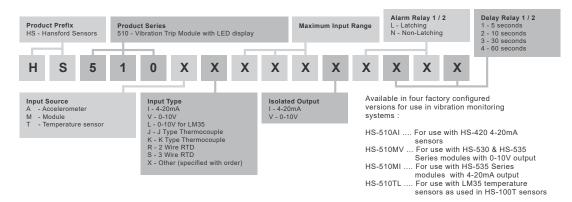
Mechanical

Plastic Case Material Mounting DIN Rail TS35 (Top Hat) 114.5 x 99 x 22.5 mm (HxDxW) Dimensions Connections Screw Clamp 0.5 to 4.0 mm Conductor Size Weight 140 gms (nom)

Electrical

Set Points	Dual relays (front panel programmable)
Relay Rating	3 Amps at 240 Volts AC
Relay Status	N/O or vN/C
	Latching / Non Latching
Relay Delays	Up to 1200 secs
Outputs	4-20 mA or 0-10 Volts DC

Environmental


Operating Temperature Range	0 to 55°C
-1 3 1	
Installation Category (IEC664)	II
3 , ()	
Equipment Class (IEC536)	III
EMC	EN61326-1:2013
Livio	L1101020 1.2010

How To Order

HS-530

Key Features

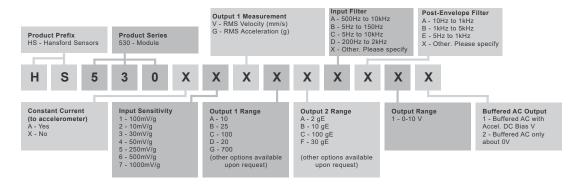
- Enveloped 'g' Output RMS Velocity Output
- 0-10V Outputs for PLCs
- **Buffered Acceleration Output** (for Data Collection)
- **TDX OK Function**
- DIN Rail Mounted

Technical Performance

Input	100 mV/g constant current accelerometer
	(other sensitivities available)
Frequency Range	10 Hz to 10 kHz (-3dB)
Output 1	Input Filters 500 Hz to 10 kHz (-3dB)
	2-pole Butterworth
Output 2	Post-Envelope Filter 10 Hz to 1 kHz (-3dB)
	2-pole Butterworth
Velocity Filters	10 Hz to 1 kHz (-3dB) 2-pole Butterworth

Mechanical

Case Material	Plastic
Mounting	DIN Rail TS35 (Top Hat)
Dimensions	134 x 99 x 22.5 mm (H x D x W) including BNC
Connections	Screw Clamp
Conductor Size	0.5 to 4.0 mm
Weight	140 gms (nom)


Electrical

Power Input	+24 V DC at 50 mA (HS-570 Power Supply Module)
Output 1	0-10 VDC = 0-20 mm/s rms Velocity
	(other ranges available)
Output 2	0-10 VDC = 0-10 gE (other ranges available)
Output 3 (BNC)	Buffered acceleration output with DC bias voltage
	(nom. 12 VDC)
	AC only about 0 V on request
Output 4	Buffered gE AC output with 9 VDC Ref. Voltage
TDX OK	Transducer OK. Outputs held at 0 V if in fault

Environmental

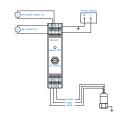
Operating Temperature Range	0 to 55°C
Installation Category (IEC664)	II
Equipment Class (IEC536)	III
EMC	EN61326-1:2013

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

HS-531

Key Features


- · Enveloped 'g Output
- RMS Velocity Output
- 0-10V Outputs for PLC
- · Buffered Acceleration Output (for Data Collection)
- TDX OK Function
- DIN Rail Mounted

Technical Performance

Input 500 mV/g constant current accelerometer Frequency Range 0.3 Hz to 2 kHz gE Filters Input Filters 200 Hz to 2 kHz (-3dB) 2-pole Butterworth Post-Envelope Filter 4 Hz to 100 Hz (-3dB) 2-pole Butterworth

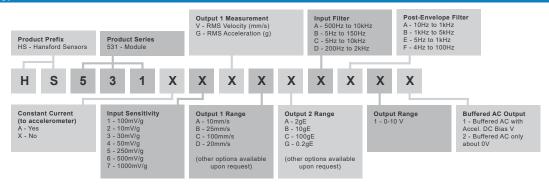
Velocity Filters 0.3 Hz to 3 Hz (-3dB) 2-pole Butterworth

Mechanical

Plastic Case Material Mounting DIN Rail TS35 (Top Hat) Dimensions 134 x 99 x 22.5 mm (HxDxW) including BNC Connections Screw Clamp Conductor Size 0.5 to 4.0 mm Weight 140 gms (nom)

Electrical

+24 VDC at 25 mA (from HS-570 Power Power Input Supply Module) 0-10 VDC = 0-6000 mm/s rms Velocity Output 1 Output 2 0-10 VDC = 0-0.2 gE (other ranges available) Buffered acceleration output with DC bias voltage Output 3 (via BNC) (nom. 12 VDC)

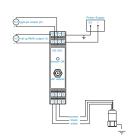

AC only about 0 V on request

Output 4 Buffered gE AC output with 9 VDC Ref. Voltage TDX OK Transducer OK. Outputs held at 0 V if in fault

Environmental

Operating Temperature Range	0 to 55°C
Installation Category (IEC664)	II
Equipment Class (IEC536)	III
EMC	EN61326-1:2013

How To Order



HS-535

Key Features

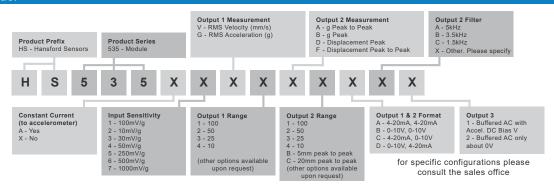
- Din Rail Mounted
- **TDX OK Function**
- RMS Velocity Output
- Peak 'g' Output
- 0-10V and 4-20mA Outputs for PLCs
- Buffered Acceleration output (for data collection)
- Displacement peak or peak to peak
- Converts AC input to multiple outputs

Technical Performance

Input	100 mV/g constant current accelerometer	
G (RMS)	10Hz to 5kHz	- 1
Frequency Range	2 Hz to 10 kHz (-3dB)	
G pk-pk Filters	10Hz to 1.5 kHz or 3.5 kHz or 5 kHz (-3dB)	-
	2-pole Butterworth. Set by internal links	(
Velocity Filters	10Hz to 1kHz (-3dB) 2-pole Butterworth	,
Displacement Filters	10Hz to 40Hz (-3dB) 2-pole Butterworth	

Mechanical

Case Material	Plastic
Mounting	DIN Rail TS35 (Top Hat)
Dimensions	134 x 99 x 22.5 mm (H x D x W) including BNC
Connections	Screw Clamp
Conductor Size	0.5 to 4.0 mm
Weight	140 gms (nom)



Electrical Environmental Power Input +24 V DC at 50 mA (HS-570 Power Supply Module) Operating Temperature Range 0 to 55°C 0-10 VDC or 4-20 mA = velocity or g RMS. Output 1 Installation Category (IEC664) Ш Equipment Class (IEC536) Set by internal link. Ш 0-10 VDC or 4-20 mA = g pk or pk to pk or displacement, EN61326-1:2013 Output 2 **EMC** see 'How To Order' table. Set by internal links Buffered accel. Output with DC bias voltage Output 3 (BNC) (nom. 12 VDC) AC only about 0 V optional - on request TDX OK Transducer OK. Outputs 1 & 2 held at 0 V or 2 mA when in fault

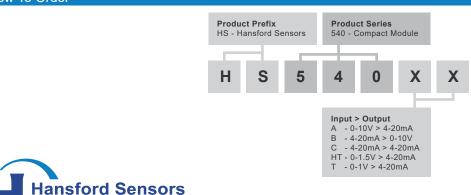
How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect.

HS-540

Key Features

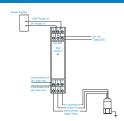
- Converts 0-10V to 4-20m or 4-20ma to 0-10V
- Isolate
 - Din Rail Mounted
 - Compact design



Technical Perfo	ormance	Mechanical	
Input	0-10V or 4-20m/	A Case Material	Plastic
Output	4-20mA or 0-10\	/ Mounting	DIN Rail TS35 (Top Hat)
Output Linearity Err	or ±0.03% typica	I Dimensions	102 x 93 x 7 mm (H x D x W)
Temperature Coeffic	cient ±100 ppm/°C	Connections	Screw Clamp
		Conductor Size	0.5 to 4.0 mm
		Weight	60 gms (nom)
Electrical		Environmental	
Power Input	+24 V DC at 50 mA (HS-570 Power Supply Module) Operating Temperature Range	0 to 55°C
Supply Current	30mA max	. Installation Category (IEC664)	II
Input Impedance	500 KOhm	s Equipment Class (IEC536)	III
Isolation Voltage	1 K	/ EMC	EN61326-1:2013

How To Order

Excellence in Vibration Monitoring



HS-550

Key Features

- Provides power for constant current accelerometers
- 3 Gain Settings
- TDX OK Indicator
- DIN Rail Mounted

Technical Performance

Power Input	24 VDC ±10% @ 20 mA max.
Accelerometer Driving Voltage	22.5 VDC
Accelerometer Constant Current	4 mA or 10 mA selectable via link
Maximum Output	±9 V at x1 gain
	±5 V at 10 gain
	±4.5 V at x100 gain
Voltage Gain	x1, x10, x100 selectable via DIL switch

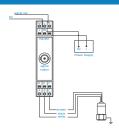
Mechanical

Case Material	Plastic
Mounting	DIN Rail TS35 (Top Hat)
Dimensions	100 x 75 x 24 mm (HxDxW)
Connections	Screw Clamp
Conductor Size	0.5 to 4.0 mm
Weight	76 gms (nom)

Electrical

Frequency Response	1 Hz to 120 KHz -3db at x1 gain
	1 Hz to 50 KHz -3db at x10 gain
	1 Hz to 10 KHz -3db at 100 gain
Broadband Noise (1-10 Khz)	70 μV rms at x1 gain
	650 μV rms at x10 gain
	3 mV rms at x100 gain
Fault Indication	Red LED 5 V > Vbias > 15 V

Environmental


Operating Temperature Range	0 to 55°C
EMC	EN61326-1:2013
Installation Category (IEC664)	II
Equipment Class (IEC536)	III

HS-551

Key Features

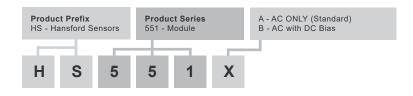
- Provides power for constant current accelerometers
- TDX OK Indicator
- AC mV/g output via BNC for data collection and analysis

Technical Performance

Power Input	24 VDC ±10% @ 5 mA max.
Accelerometer Driving Voltage	22.5 VDC
Accelerometer Constant Current	3.5 mA
Frequency Response	1 Hz to 100 kHz ±3db

Mechanical

Operating Temperature Range	0 to 55°C
EMC	EN61326-1:2013
Installation Category (IEC664)	II
Equipment Class (IEC536)	III


Electrical

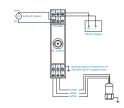
mV AC via BNC or Screw
Terminals (0 VDC bias)
mV AC + Accel. DC bias via
screw terminals
Nom. 100 mV/g or as stated on the
Accelerometer Calibration Sheet

Environmental

Case Material	Plastic
Mounting	DIN Rail TS35 (Top Hat)
Dimensions	100 x 75 x 24 mm (HxDxW) including BNC
Connections	Screw Clamp
Conductor Size	0.5 to 4.0 mm
Weight	76 gms (nom)

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-556

Key Features

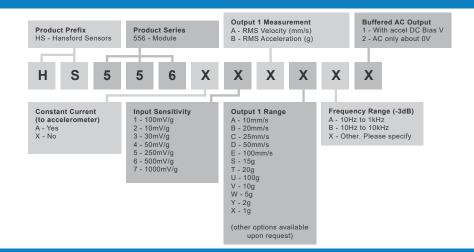
- Industrial Accelerometer input
- 4-20mA Velocity or 'g' output
- Low pass filter
- Din Rail Mounted
- **Buffered Accelerometer** output (for data collection) via BNC

Technical Performance

Input	100 mV/g constant current accelerometer
	(other sensitivities available)
Acceleration Range	To be specified
or Velocity Range	To be specified
Frequency Range	2 Hz to 10 kHz (-3 dB) - ISO 10816
Filters	Velocity version: 10 Hz to 1 kHz (-3dB)
	2-pole Butterworth
	'g' version: 10 Hz to 5 kHz (-3dB)

Mechanical

Case Material	Plastic
Mounting	DIN Rail TS35 (Top Hat)
Dimensions	120 x 75 x 23 mm (HxDxW) including BNC
Connections	Screw Clamp
Conductor Size	0.5 to 4.0 mm
Weight	80 gms (nom)

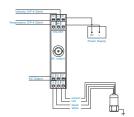

Electrical

Power Input	24 V DC @ 50 mA (from HS-570 Power Supply Module)
Output 1	Velocity version: 4-20 mA = 0-25 mm/s rms
	'g' version: 4-20 mA = 0-5 g rms
	Max. load resistance = 500 Ohms
Output 2	Buffered accel. Output with DC bias voltage
	(nom 12 VDC)
	AC only about 0 V on request

Environmental

Operating Temperature Range	0 to 55°C
Installation Category (IEC664)	II
Equipment Class (IEC536)	III
FMC.	EN61326-1:2013

How To Order


2-pole Butterworth

HS-557

Key Features

- Industrial Accelerometer input
- 4-20mA Velocity or 'g' output
- Low pass filter
- Din Rail Mounted
- Buffered Accelerometer output (for data collection) via BNC and screw terminals
- Temperature Input
- 4-20mA Temperature Output

www.hansfordsensors.com sales@hansfordsensors.com

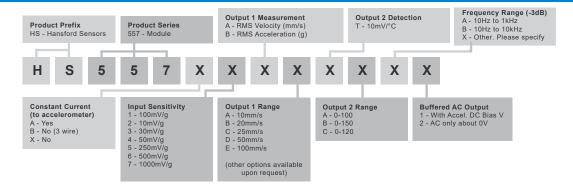
We reserve the right to alter the specification of this product without prior notice

Technical Per	formance	
Input 1		Temperature Sensor PT100 or 10 mV/°C
Acceleration Range	Э	To be specified
or Velocity Range		To be specified
Frequency Range		2 Hz to 10 kHz (-3 dB) - ISO 10816
Filters	Velocity version:	10 Hz to 1 kHz (-3dB) 2-pole Butterworth
	'g' version:	10 Hz to 5 kHz (-3dB) 2-pole Butterworth

Mechanical Case Material Plastic Mounting DIN Rail TS35 (Top Hat) Dimensions 120 x 75 x 23 mm (HxDxW) including BNC Connections Screw Clamp Conductor Size 0.5 to 4.0 mm Weight 80 gms (nom)

Power Input	24 V DC @ 70 mA (from HS-570 Power Supply Module)
Output 1	Velocity version: 4-20 mA = 0-25 mm/s rms
	'g' version: 4-20 mA = 0-5 g rms
	Max. load resistance = 500 Ohms
Output 2	Temperature 4-20 mA = 0-100 °C (others available)

Buffered accel. Output with DC bias voltage (nom 12 VDC)


AC only about 0 V on request

Operating Temperature Range0 to 55°CEMCEN61326-1:2013Installation Category (IEC664)IIEquipment Class (IEC536)III

How To Order

Electrical

Output 3

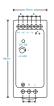
Environmental

HS-570 Power Supply Modules

HS-570-20

Key Features

- · Isolated Mains Power Supply
- For use with all HS-500 series
- · Short circuit protected
- Capable of powering up to 8 modules
- Weight- 190 gms (nom)



HS-570-40

Key Features

- Isolated Mains Power Supply
- For use with all HS-500 series
- Capable of powering up to 12 modules
- Weight-300 gms (nom)

www.hansfordsensors.com sales@hansfordsensors.com

We reserve the right to alter the specification of this product without prior notice

HS-570 Power Supply Modules

HS-570-60

Key Features

- Isolated Mains Power Supply
- For use with all HS-500 series
- Short circuit protected
- Capable of powering up to 20 modules
- Weight-330gms (nom)

Technical Performance

Input Voltage Range Output Voltage Range

see: 'How To Order' table

see: 'How To Order' table

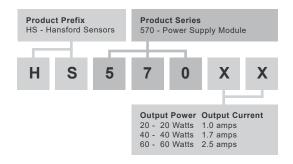
UL508, TUV EN60950-1 approved, NEC class

2 / LPS compliant

	(Overload Protection	Constant	current protection, recovers	
			automatically afte	er fault condition is removed	
Mechanical		Environment	al		
Case Material	Plastic	Operating Tempe	rature Range	-20 to 70 °C	
Mounting	DIN Rail TS35 (Top Hat)	Relative Humidity	•	20 to 90% RH	
Dimensions	see: diagram	Emmision	EN55011, EN55022 (CISPR22), EN61204-3 Class B,	
Connections	Screw Clamp			EN61000-3-2, -3	
Conductor Size	0.5 to 4.0 mm	Immunity	EN61000-4-2, 3, 4, 5, 6,	8, 11, EN55024, EN61000-6-1,	
			EN61204	-3. light industry level, criteria A	

Safety Standards

Electrical


Output Power

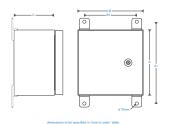
Output Current

85 to 264 Volts AC

24 Volts DC

How To Order

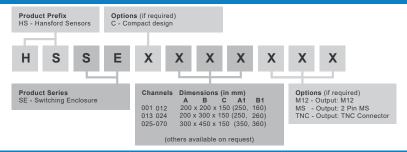
Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-SE Switching

Key Features

- Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via one connector

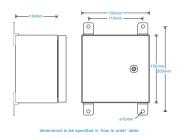


Technical Performance

Inputs Via accelerometer Output BNC as standard (alternatives can be specified in 'How To Order' table) Engraved traffolyte panel Mounting Board (customisable upon request) Material Mild Steel painted RAL 7042 as standard (alternatives can be specified in options of 'How To Order' table) Dimensions see: 'How To Order' table Sealing **IP66**

Termination Din rail terminals wired to switch Twist Handle Door Glands supplied but not fitted Glanding Holes are punched for: Single input M12 - ø3.5-7mm cable Single input M20 - ø7-13mm multi-core cable Multi input M20 - 3 x ø5.3mm Labelling Channel locations - other labelling available upon request Mounting supplied are 4 x Brackets EN61326-1:2013 **EMC**

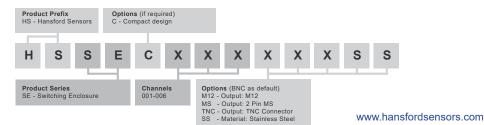
How To Order



HS-SEC Switching

Key Features

- Provides a terminal to take readings from accelerometers via a portable data-collector
- · Multiple outputs via one connector
- Compact design
- Stainless Steel

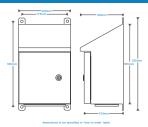

Technical Performance

Inputs Via accelerometer BNC as standard (alternatives can be Output specified in 'How To Order' table) Mounting Board Engraved traffolyte panel (customisable upon request) 304 Stainless Steel (to be specified Material in options of 'How To Order' table) Dimensions see: 'How To Order' table Sealing IP66 Termination Din rail terminals wired to switch

Door Twist Handle
Glanding Glands supplied but not fitted
Holes are punched for:
Single input M12 - Ø3.5-7mm cable
Single input M20 - Ø7-13mm multi-core cable
Multi input M20 - 3 x Ø5.3mm
Labelling Channel locations - other
labelling available upon request
Mounting supplied are 2 x Brackets
EMC EN61326-1:2013

How To Order

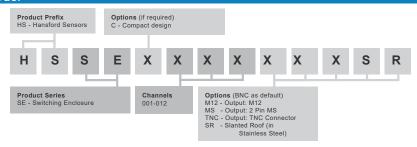
Hansford Sensors
Excellence in Vibration Monitoring



HS-SE-SR Compact Switching

Key Features

- Protective roof to stop dust and dirt settling
- Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via one connector



Technical Performance

Inputs Via accelerometer BNC as standard (alternatives can be Output specified in 'How To Order' table) Mounting Board Engraved traffolyte panel (customisable upon request) Mild Steel painted RAL 7042 as Material standard (alternatives can be specified in options of 'How To Order' table) Dimensions see: 'How To Order' table Sealing

Termination Din rail terminals wired to switch Twist Handle Door Glanding Glands supplied but not fitted Holes are punched for: Single input M12 - ø3.5-7mm cable Single input M20 - ø7-13mm multi-core cable Multi input M20 - 3 x ø5.3mm Labelling Channel locations - other labelling available upon request Mounting supplied are 4 x Brackets EN61326-1:2013 **FMC**

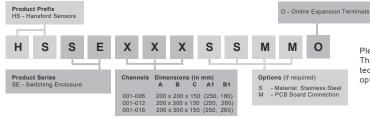
How To Order

HS-SESSMMO

Key Features

- Continuous BNC and 2 Pin MS connector
- Multiple Outputs via one connector
- Terminals for online expansion
- Provides a terminal to take readings from accelerometers via a portable datacollector

12 Way



Technical Performance

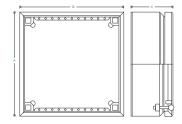
Inputs Via accelerometer Door Lock and polyamide key BNC and 2 Pin MS as standard Glands supplied but not fitted Output Glanding Holes are punched for: Mounting Board **PCB** Panel Single input M12 - ø3.5-7mm cable Single input M20 - ø7-13mm multi-core cable Multi input M20 - 3 x ø5.3mm Material 304 Stainless Steel Labelling Channel locations - other Termination Quick-release terminal labelling available upon request Dimensions see: 'How To Order' table supplied are 4 x Brackets Mounting **IP66** EN61326-1:2013 Sealing **EMC**

How To Order

Hansford Sensors Excellence in Vibration Monitoring

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

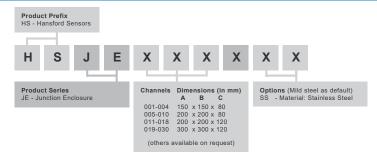
www.hansfordsensors.com



HS-JE Junction

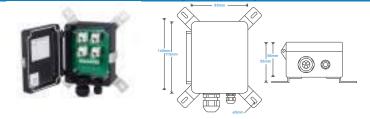
Key Features

- Accelerometer cable glanding
- Ease of installation
- Flexible combination



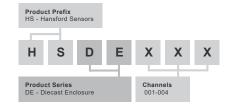
Technical Performance

Inputs Accelerometer cabling Glanding Glands supplied but not fitted Output Multi-core glanding Holes are punched for: Mild Steel painted RAL 7042 as Single input M12 - ø3.5-7mm cable Material Single input M20 - ø7-13mm multi-core cable standard (alternatives can be specified in options of 'How To Order' table) Multi input M20 - 3 x ø5.3mm see: 'How To Order' table Channel locations - other Dimensions Labelling labelling available upon request Sealing **IP66** Termination Klippon Type Mounting supplied are 4 x Brackets Operating Temperature Range -20 to 130°C **EMC** EN61326-1:2013


How To Order

HS-DE Diecast

Key Features

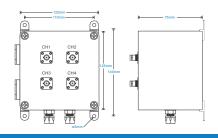

- Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via multiple connector

Technical Performance

Inputs Via accelerometer Glanding Glands supplied but not fitted Holes are punched for: Single input M12 - ø3.5-7mm cable Output **BNC** Powdercoated Black Aluminium Material **Dimensions** see: diagram Single input M20 - ø7-13mm multi-core cable Multi input M20 - 3 x ø5.3mm supplied are 4 x Brackets Sealing ĬP55 Mounting Termination Industrial connectors Door Single latch closing **EMC** EN61326-1:2013

How To Order

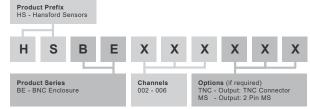
Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.



HS-BE BNC

Key Features

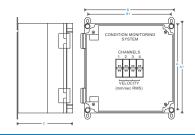
- · Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via multiple connectors



Technical Performance

Inputs	Via accelerometer	Glanding	Glands supplied and fitted
Output	BNC as standard (alternatives can be		Holes are punched for:
	specified in 'How To Order' table)		Single input M12 - ø3.5-7mm cable
Material	Polycarbonate	Labelling	Screen printed channel identification
Dimensions	see: diagram	Mounting	supplied are 4 x Brackets
Sealing	IP55	EMC	EN61326-1:2013
Termination	PCB Mounted Screw Terminal		
Door	Hinged		

How To Order

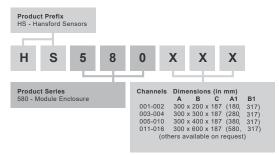

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

HS-580 Module

Key Features

- Isolated Mains Power Supply
- For use with all HS-500 Series
- **Short Circuit Protected**
- Safety to UL1310 Class II
- Polycarbonate

Technical Performance

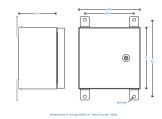

Input Voltage Range 85 to 260 VAC Output Voltage Range 24 VDC **Output Power** 2 Amps Case Material Polycarbonate DIN Rail TS35 (Top Hat) see: 'How To Order' table Mounting Dimensions Screw Clamp Connections Conductor Size 0.5 to 4.0mm Weight 260gms (nominal)

Environmental

Operating Temperature Range 0 to 55°C IP66 (excluding fans) Sealing Cooling Two fans Relative Humidity 20 to 90% RH **EMC** EN61326-1:2013 Installation Category (IEC664) Ш Equipment Class (IÉC536) Ш

How To Order

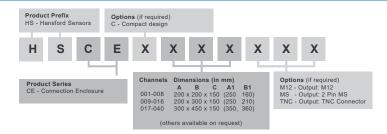
Hansford Sensors Excellence in Vibration Monitoring



HS-CE Connection

Key Features

- Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via multiple connector

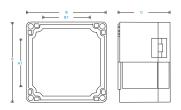


Technical Performance

Via accelerometer Inputs BNC as standard (alternatives can be Output specified in 'How To Order' table) Engraved traffolyte panel Mounting Board (customisable upon request) Mild Steel painted RAL 7042 as Material standard (alternatives can be specified in options of 'How To Order' table) see: 'How To Order' table Dimensions Sealing **IP66**

Termination Klippon Type Door Twist Handle Glanding Glands supplied but not fitted Holes are punched for: Single input M12 - ø3.5-7mm cable Single input M20 - ø7-13mm multi-core cable Multi input M20 - 3 x ø5.3mm Labelling Channel locations - other labelling available upon request Mounting supplied are 4 x Brackets **EMC** EN61326-1:2013

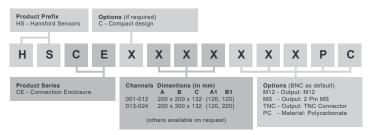
How To Order



HS-CE Connection

Key Features

- Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via multiple connector


Technical Performance

Inputs Via accelerometer Output BNC as standard (alternatives can be specified in 'How To Order' table) Mounting Board Engraved traffolyte panel (customisable upon request) Material Polycarbonate (to be specified in options of 'How To Order' table) **Dimensions** see: 'How To Order' table Sealing Termination Klippon Type

Glanding Glands supplied but not fitted Holes are punched for: Single input M12 - ø3.5-7mm cable Single input M20 - ø7-13mm multi-core cable Multi input M20 - 3 x ø5.3mm Channel locations - other Labelling labelling available upon request Mounting supplied are 4 x Brackets

How To Order

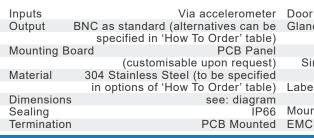
Hansford Sensors ence in Vibration Monitoring

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect.

This is not the full product list, other options are available.

www.hansfordsensors.com sales@hansfordsensors.com

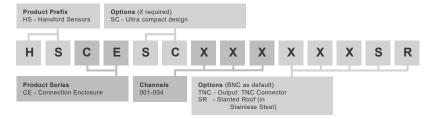
TS891 1


We reserve the right to alter the specification of this product without prior notice

HS-CESC-SR Connection

Key Features

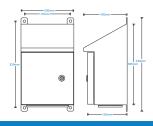
- Protective roof to stop dust and dirt settling
- Provides a terminal to take readings from accelerometers via a portable data-collector
- Multiple outputs via multiple connector
- Compact design


Technical Performance

Door Twist handle
Glanding Glands supplied but not fitted
Holes are punched for:
Single input M12 - Ø3.5-7mm cable
Single input M20 - Ø7-13mm multi-core cable
Multi input M20 - 3 x Ø5.3mm
Labelling Channel locations - other
labelling available upon request
Mounting supplied are 2 x Brackets
EMC EN61326-1:2013

•

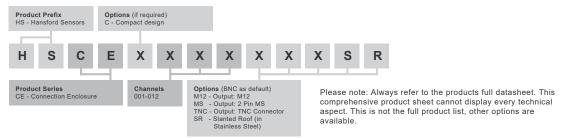
How To Order



HS-CE-SR Connection

Key Features

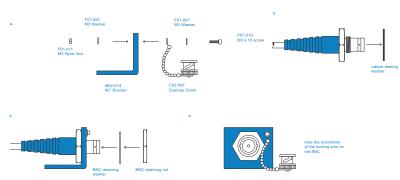
- Protective roof to stop dust and dirt settling
- Provides a terminal to take readings from accelerometers via a portable data-collector
- · Multiple outputs via multiple connectors



Technical Performance

Via accelerometer Lock and polyamide key Inputs Output BNC as standard (alternatives can be Glanding Glands supplied but not fitted specified in 'How To Order' table) Holes are punched for: Single input M12 - ø3.5-7mm cable Mounting Board Engraved traffolyte panel (customisable upon request) Single input M20 - ø7-13mm multi-core cable 304 Stainless Steel (to be specified Material Multi input M20 - 3 x ø5.3mm in options of 'How To Order' table) Labelling Channel locations - other **Dimensions** labelling available upon request see: diagram supplied are 4 x Brackets IP65 Mounting Sealing EN61326-1:2013 Termination Klippon Type **EMC**

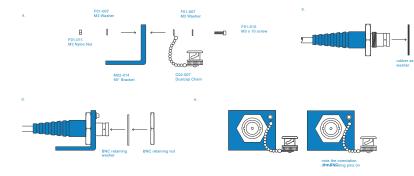
How To Order


www.hansfordsensors.com

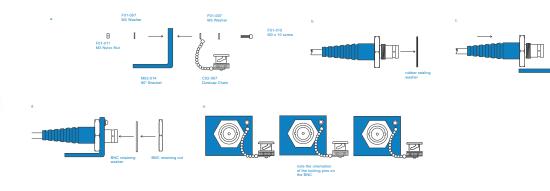
HS Brackets 90° BNC Bulkhead Socket

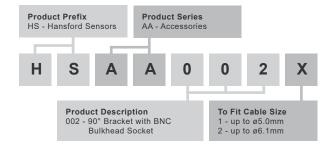
HS-AA002

Product Components



Product Components




HS-AA002-1-3

Product Components

How To Order

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

adapters

Adapters to connect accelerometers to machine faces.

Mounting Studs provide a secure, permanent or semi-permanent point of connection.

Part No.	Connection Point 1	Connection Point 2	
			A 0
HS-AS006	Quick Fit Female	1/4"-28 UNF Male	Gran Com
HS-AS009	M6 Female	M8 Male	
HS-AS026	10-32 UNF Male	M6 Male	
HS-AS028	Quick Fit Female ½" UNC	1/4"-28 UNF Male	
HS-AS030	M8 x 1.25 Female	1/8"BSPT Male	
HS-AS032	Quick Fit Female	M8 Male	@ @
HS-AS039	Quick Fit Female ½" UNC	10-32 UNF Male	
HS-AS045	Quick Fit Female	M5 Female	
HS-AS088	Quick Fit Female 9/16" UNC	M5 Female	
HS-AS092	3/8" UNF Female	3/8" NPT Male	
HS-AS103	1/4"-28 UNF Female	1/4" NPT Male	@ 8
N3-A3103	/4 -20 UNF Female	/4 INFT IVIAIE	A 6
HS-AS107-M6	M6 Female	M6 Male	9 9
HS-AS111	M8 Female	M8 Female	9 9
HS-AS119	1/4"-28 UNF Female	1/4"-28UNF Male	@ &
HS-AS121	1/4"-28 UNF Female	3/8"-16 UNC Male	00

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

Side entry accelerometer bolts

For use with side entry accelerometers to provide a male thread.

Mounting Studs provide a secure, permanent or semi-permanent point of connection.

Part No.	Connection Point 1	Connection Point 2		
HS-AS042-M6	Socket Cap	M6 Male	T	•
			è	7
			1	R.
HS-AS042-M8	Socket Cap	M8 Male		Ĭ .
			£	á)
			(8)	63
HS-AS098	Socket Cap	M6 Male	1	-
THE REGULE	Cooker Gup	ino maio		Į.
			4	(E)
			7	6)
HS-AS109	Socket Cap	1/4"-28 UNF Male		
			8	Ð
			(V)	6
110 40444	Have no nellland	MO Mala	T	
HS-AS114	Hexagonal Head	M6 Male		
			1	a ·
			(8)	100
HS-AS129	Havaganal Haad	1/4"-28 UNF Male		T.
П о- А о 129	Hexagonal Head	/4 -ZO UNF Wale		
				1

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

Conical mounts

For use with motor with existing conical mount.

Mounting Studs provide a secure, permanent or semi-permanent point of connection.

Part No.	Connection Point 1	Connection Point 2	
			600
HS-AS031-1/4-M8	1/4"-28 UNF Female	M8 Male	
			8 R
HS-AS031-M6-M6	M6 Female	M6 Male	4
			2
HS-AS031-M6-M8	M6 Female	M8 Male	W 4
			E 100
			(P) E
HS-AS031-M8-M8	M8 Female	M8 Male	- A
			W. (Co.)

Fin Mounts

For use in the fins of an electric motor.

Mounting Studs provide a secure, permanent or semi-permanent point of connection.

Part No.	Connection			
				6
HS-AS040-40	1/4"-28 UNF Female	40 mm x 7 mm	T	
				39
				fi .
HS-AS040-50	1/4"-28 UNF Female	50 mm x 7 mm		
			10	(10)
				The second secon

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

			60	-
HS-AS105-1	1/4"-28 UNF Female	30 mm x 13 mm		100
				U
			1	-
HS-AS105-2	1/4"-28 UNF Female	50 mm x 13 mm	100	100
			8	
HS-AS105-3	1/4"-28 UNF Female	45 mm x 5 mm		1000
			b	
HS-AS105-4	1/4"-28 UNF Female	25 mm x 5 mm	(MI)	500
			Contract of the Contract of th	700

glue face

Glue face studs are designed to provide a stronger glue surface to connect an accelerometer to the machine.

Mounting Studs provide a secure, permanent or semi-permanent point of connection

Part No.	Connection Point	t 1 Connection Point 2	2		
			450	4500	
HS-AS014	1/4"-28 UNF Male	Glue Face x Ø19mm	(E)	100	
HS-AS019-1	5 Magnet	Glue Face x Ø15mm	(0)	0	
HS-AS019-1	8 Magnet	Glue Face x Ø18mm	(E)	0	
HS-AS019-2	4 Magnet	Glue Face x Ø24mm	630	630	For quantity this product can be etched
ПЗ-A3019-2	4 Magnet	Side Face X 924mm			To quantity this product can be elened
HS-AS019-3) Magnet	Glue Face x Ø30mm		1	For quantity this product can be etched
HS-AS019-3	8 Magnet	Glue Face x Ø38mm			For quantity this product can be etched
HS-AS027-N	6 M6 Female	Glue Face x 20mm AF	0	6	
HS-AS027-N	8 M8 Female	Glue Face x 20mm AF	(2)	6	
HS-AS027-N	8x1 M8 x 1 Female	Glue Face x 20mm AF	0	63	
HS-AS029	10-32 UNF Male	Glue Face x Ø19mm	1	0200	
HS-AS036	M8 Male	Glue Face x 20.6mm AF	1	3	
HS-AS059-1.	/4 1/4"-28 UNF Female	Glue Face x Ø19mm		60	
HS-AS059-N	6 M6 Female	Glue Face x Ø19mm		60	
110-70009-10		2.22 1 200 11 2		670	
HS-AS059-N	8 M8 x 1.25 Female	Glue Face x Ø19mm	-	(4)	
HS-AS087	Magnet - Ø5mm Centr	e Hole Glue Face x Ø19mm			

HS-AS Studs mounting/grub screws

Screw studs for use to adapt a female thread into a male thread.

Mounting Studs provide a secure, permanent or semi-permanent point of connection

Part No.	Connection Point 1	Connection Point 2			
				454	
HS-AS008	1/4"-28 UNF Male	M8 Male x 1.25 Stop & Slot	1	4	
HS-AS020	10-32 UNF 3/8" Male	10-32 UNF 3/8" Male Hex Socket Drive		£	
HS-AS021	1/4"-28 UNF Male	M40 Mala v 4 F0 Stan 9 Slat		5	
ПО-АОUZ I	74 -20 UNF Male	M10 Male x 1.50 Stop & Slot	4	4	
			2.00	7 See	
HS-AS022	1/4"-28 UNF 1/2" Male	1/4"-28 UNF 1/2" Male Hex Stop & Slot	8		
HS-AS023	1/4"-28 UNF Male	M8 Male x 1.25 x 8mm Long	8	9	
		•	607	'e:	
HC AC004	1/" 00 HNF Mala	M6 Male x 1 Stop & Slot	(2)	6	
HS-AS024	1/4"-28 UNF Male	Mo Male X 1 Stop & Slot	(4)	4)	
				-	
HS-AS025	1/4"-28 UNF Male	3/8"-24 UNF Male	4	1	
HS-AS043	1/4"-28 UNF Male	10-32 UNF Male	1	1	
HS-AS053	1/4"-28 UNF Male	M6 Male x 1mm x 10mm Long	10	2	
110-40000	/4 -20 ONI Walc	We wate a finite a formit being	(6)		
HS-AS069	1/4"-28 UNF Male	1/4"-28 UNF Male Stop & Slot	6	6	
113-A3009	/4 -20 UNF Wale	74 20 OH Maio Glop a Glot	- 1	4	
			0		
HS-AS076	½"-28 UNF Male	M6 Male with Screwdriver Slot	(E)	1	
			AD.	400	
HS-AS081	1/4"-28 UNF Male	M12 Male x 1.7 x 10mm Long	(63)	(E)	

HS-AS Studs mounting/grub screws

mounting, grab	30.0110				
Part No.	Connection Point 1	Connection Point 2			
110 40000	1/8 00 11NF M	M40 M L 4 5 40 L	45	6.1	
HS-AS083	1/4"-28 UNF Male	M10 Male x 1.5 x 12mm Long	進	4	
HS-AS084	1/4"-28 UNF Male	M5 Male x 0.8	8	9	
HS-AS086	1/4"-28 UNF Male	M8 x 1 Male	10	2	
	1/1 00 IN 5 M I	N/40 / 405 N/ /	60	0	
HS-AS090	1/4"-28 UNF Male	M10 x 1.25 Male	4	1	
HS-AS101	1/4"-28 UNF Male	½"-28 UNF Male	de)	5	
HS-AS102	1/4"-28 UNF Male	½"-28 UNF Male with Screwdriver Slot	1	0	
	4/11 22 1111 2		10	60	
HS-AS104	1/4"-28 UNF Male	M6 Male x 1 x 7.5mm Long		ā.	
HS-AS110	1/4"-28 UNF Male	M10 x 1.25 Male x 12mm Long	A .	1	
				4	
HS-AS112	1/4"-28 UNF Male	M12 x 1.5 Male	4	-	
	4/8 00 1117	//an //a ====	40.	(6)	
HS-AS115	1/4"-28 UNF Male	1/2" - 13 TPI UNC x 1" Male	值)	4	
HS-AS122	1/4"-28 UNF Male	M10 x 1 Male	8	107	
				37.4	
HS-AS208	1/4"-28 UNF 1/2" Male	1/4"-28 UNF 1/2" Male Hex Socket Drive			

Isolation

Provides a barrier to cut down on electrical interference.

Mounting Studs provide a secure, permanent or semi-permanent point of connection.

Part No.	Connection Point 1	Connection Point 2			
			_		
HS-AS046-1	M6 x 1 Female	M6 x 1 Male	8.5		
			-	-	
HS-AS046-2	1/4"-28 UNF Female	1/4"-28 UNF Male		1	
			•	-	
HS-AS046-3	M8 x 1.25 Female	M8 x 1.25 Male			
			201/20		
HS-AS051-1/4	1/4"-28 UNF Male	1/4" - 28UNF Female Nylatron		8	
			-070	450	
HS-AS051-M6	M6 x 1 Male	M6 x 1 Female Nylatron	1020		
			-		
HS-AS051-M8	M8 x 1.25 Male	M8 x 1.25 Female Nylatron	100		
			-		
HS-AS051-M8X1.25	M8 x 1.00 Male	M8 x 1.25 Female Nylatron	1000		
HS-AS051-M10	M10 x 1.5 Male	M10 x 1.5 Female Nylatron	Sidna!	1	
			400		
HS-AS051-M10X1.25	5 M10 x 1.25 x 10mm Male	M10 x 1.25 Female Nylatron	Ca (III)	(Stein)	
				100	

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

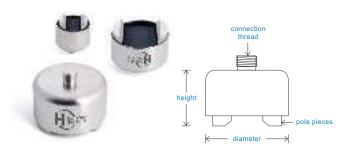
HS-AS Studs Quick Fit threads

For use with accelerometers with quick-fit threads.

Mounting Studs provide a secure, permanent or semi-permanent point of connection

Part No.	Connection Point 1	Connection Point 2		
HS-AS001	Quick Fit Male	Glue Face	8	69
HS-AS002	Quick Fit Male	M8 Male	6	(2)
			-	100
HS-AS003	Quick Fit Male	M6 Male		(B)
HS-AS004	Quick Fit Male	1/4"-28 UNF Male	63	Q3
HS-AS007	Quick Fit Male	M10 Male	8	(株)
				_
HS-AS010	Quick Fit Male	M8 x 1.25 Female	0	6
				400
HS-AS011	Quick Fit Male	M6 x 1 Female		6
			-	47%
HS-AS012	Quick Fit Male	1/4"-28 UNF Female	(E)	
				-
HS-AS013	Quick Fit Male (9/16" UNC)	Glue Face	1	60
			400	ATTEN .
HS-AS018	Quick Fit Male (½" UNC)	Glue Face	(40)	9

HS-AS Studs Quick Fit threads


Part No.	Connection Point 1	Connection Point 2		
HS-AS033	Quick Fit Male	M8 x 1 Male		0
HS-AS034	Quick Fit Male (½" UNC)	M6 x 1 Male		69
			-	1
HS-AS037	Quick Fit Male (½" UNC)	M8 x 1.25 Male	1	63
			(2)	6 1
HS-AS041	Quick Fit Male	3/8" BSP	1	
HS-AS049	Quick Fit Male	1/8" BSP		(0)
110 7100 10	Quion in maio		6	
HS-AS064	Quick Fit Male	M5 Male	0	(L)
			0.53	
HS-AS065	Quick Fit Male	Glue face and M6 x 1 Female	3	
HS-AS072	Quick Fit Male	M8 x 8mm Male		D
			ATTIN.	
HS-AS078	Quick Fit Male	Glue Face in 316L Stainless Steel	1	60
			de Sa	(A)
HS-AS108	Quick Fit Male	M12 Male		
HS-AS120	Quick Fit Male	1/4"NPT Male		
110-70120	QUION I IL IVIDIO	1/7 IV I IVIAIC	-	

HS-AM Magnets - Pole Piece

We manufacture a range of accessories for use with our comprehensive series of industrial accelerometers to achieve a secure surface fit.

Pole Piece Pot Magnets provide a secure, semi-permanent point of connection to a curved surface and all have an operating temperature range up to 120°C.

Part No.	Diameter	Thread	Pull Strength	Height		
					1265	_
HS-AM020	20mm	1/4"-28 UNF Male	8.5kg	17mm		
						-
HS-AM001	25mm	1/4"-28 UNF Male	18kg	17mm	1115	
					-	
HS-AM002	25mm	M6 Male	18kg	17mm	100	
HS-AM003	25mm	M8 Male	18kg	17mm	100	
HS-AM004	25mm	10-32 UNF Male	18kg	17mm	iii.	
					6	
HS-AM026	25mm	1/2" UNC Q-Fit Male	18kg	21mm	85	Right
					(4)	
HS-AM005	25mm	Q-Fit Male	18kg	23mm	H	A PAR
HS-AM010	25mm	M5 Female	18kg	23mm	10	-SH
					(0)	400
HS-AM011	25mm	M6 Female	18kg	23mm	<u> </u>	100
					(3)	
HS-AM012	25mm	1/4"-28 UNF Female	18kg	23mm	- m	H\$P
HS-AM013	25mm	M8 Female	18kg	23mm	10	10分割
					W	1400

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

HS-AM Magnets - Pole Piece

Part No.	Diameter	Thread	Pull Strength	Height			
				•	1		
HS-AM018	32mm	1/4"-28 UNF Male	20kg	20mm	80km	- त् म	
					4000	-	
HS-AM036	32mm	M6 Male	20kg	20mm	-		
					HA	- Car	
	00	N/0 N/	001		()		
HS-AM037	32mm	M8 Male	20kg	20mm	He-		
					415	A STATE OF THE STA	
HS-AM041	32mm	M6 Female	20kg	26mm	7		
					1	Calle .	
					- 10 TO Table 1	_	
HS-AM040	32mm	M8 Female	20kg	26mm	中	- Sign	
					6		
HS-AM035	32mm	1/4"-28 UNF Female	20kg	26mm	10 St.	-10	
					100	6.4	
					40000	13 - 15	
HS-AM039	35mm	1/4"-28 UNF Male	35kg	33mm	In-	49	
					-	A CONTRACTOR OF THE PARTY OF TH	
					(.)		
HS-AM042	35mm	M5 Female	35kg	33mm	40.4		
						200	
					-	de la constante	
110 414040	25	MO Famala	051	20			
HS-AM043	35mm	M6 Female	35kg	33mm	1694	-(4)	
					(
HS-AM038	35mm	1/4"-28 UNF Female	35kg	33mm	900		
					ASSESSED NO.	0.00	
110 000044	25,000	MO Famala	O.F.I.	22	100		
HS-AM044	35mm	M8 Female	35kg	33mm	95-		
					-		

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

HS-AM Magnets - Flat Face

We manufacture a range of accessories for use with our comprehensive series of industrial accelerometers to achieve a secure surface fit.

Flat Face Pot Magnets provide a secure, semipermanent point of connection to a flat surface and all have an operating temperature range up to 120°C.

Part No.	Diameter	Thread	Pull Strength	Height		
HS-AM027	20mm	1/4"-28 UNF Male	12kg	8mm	(2)	0
HS-AM028	20mm	M6 Male	12kg	8mm	(Sh)	0
		o maio	9		0	(E)
					-	~
HS-AM029	20mm	M8 Male	12kg	8mm	(8)	9
HS-AM030	20mm	10-32 UNF Male	12kg	8mm	din	0
			3		400	
					Contract of	~
HS-AM009	25mm	1/4"-28 UNF Male	13.5kg	8mm	8	\circ
HS-AM006	25mm	M6 Male	13.5kg	8mm	1	0
			Ū		400.7	SHE.
					-100	\circ
HS-AM007	25mm	M8 Male	13.5kg	8mm	8	9
HS-AM024	25mm	10-32 UNF Male	13.5kg	8mm	(1)	0
			-			
					(6)	0
HS-AM008	25mm	Q-Fit Male	13.5kg	14mm	8	60
						0000
HS-AM014	25mm	1/4"-28 UNF Female	13.5kg	15mm	177	Q
			-		HE	- The state of the
			40.5		(3)	0
HS-AM015	25mm	M5 Female	13.5kg	15mm	42-	EH.

HS-AM Magnets - Flat Face

Part No.	Diameter	Thread	Pull Strength	Height		
HS-AM016	25mm	M6 Female	13.5kg	15mm	中	
HS-AM017	25mm	M8 Female	13.5kg	15mm	(200	0
THE AUTOTA	2011111	Wo I official	10.0Kg	10111111	The state of the s	- A
HS-AM031	30mm	1/4"-28 UNF Male	25kg	10mm		\circ
HS-AM032	30mm	M6 Male	25kg	10mm	\mathbf{u}	\circ
HS-AM033	30mm	M8 Male	25kg	10mm		
HS-AM034	30mm	10-32 UNF Male	25kg	10mm	-	
HS-AM045	30mm	1/4"-28 UNF Female	25kg	16mm	HE-	-38
HS-AM046	30mm	M6 Female	25kg	16mm	HE .	-38
HS-AM047	30mm	M8 Female	25kg	16mm	High.	-30
HS-AM019	40mm	1/4"-28 UNF Male	50kg	9mm	2	Section 1

Please note: Always refer to the products full datasheet. This comprehensive product sheet cannot display every technical aspect. This is not the full product list, other options are available.

